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Abstract— Artificial Intelligence provides both opportunities
and considerable challenges to the continued growth of Air
Traffic Control (ATC) services. This paper presents a study where
a personalized and transparent machine learning decision aid
for ATC conflict resolution was built and empirically evaluated
with air traffic controllers. Multi-site simulations were conducted
with 34 controllers working together with an AI agent to solve
conflicts between aircraft in enroute traffic scenarios. Resolution
advisories varied in conformance (degree of personalization)
and transparency. Main effects of conformance were found on
controllers’ resolution performance and response to advisories
in terms of acceptance and ratings of agreement and similarity
to own solution. The separation distance aimed for by the
advised solution was found to be particularly important for the
response to optimal advisories. More positive responses were
measured for controllers whose separation margin preferences
was closer aligned with the advisory. The study provides the
aviation community with knowledge on how conformal and
transparent AI support systems affect operators’ responses to
system-generated resolution advisories.

Keywords—Machine learning; Artificial intelligence; Air Traf-
fic Control; Conflict detection and resolution; Personalization;
Strategic conformance; Transparency; Explainability; Decision
support systems

I. INTRODUCTION

Advances in the Artificial Intelligence (AI) subdomain of
Machine Learning (ML) provide opportunities to the continued
growth of Air Traffic Control (ATC) services. Particularly for
the conflict detection and resolution (CD&R) process, ML can
offer potential workload, efficiency, and safety benefits. How-
ever, mismatches in AI and human problem solving strategies
can negatively influence human acceptance and willingness
to interact with these systems. ML applications tend to be
difficult to understand for the operators it intends to support.
A core human factors challenge in safety-critical systems is
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how to design systems so that humans can understand its
output and behavior. Overcoming this hurdle is considered
essential for achieving meaningful teamwork between humans
and autonomous agents [1]–[3].

The constructs of agent transparency and Explainable AI
(XAI) have been suggested for overcoming understanding
issues and support trust development, acceptance, and situation
awareness. Here, transparency refers to the degree to which the
system makes its internal processes apparent to the operator.
Achieving the potential of AI decision aids implies solutions
to be different from those preferred by the human, i.e., in
a nonconformal way. Transparency is therefore envisioned to
be most beneficial in situations where there is a mismatch
between the human and automation solution.

AI systems are often designed to achieve optimal perfor-
mance in a given domain, with little regard to individual pref-
erences and needs. Yet, ML systems offer a unique ability to
adapt to individual preferences in decision making strategies.
Research has shown benefits from systems that adapt their
behavior and performance to the individual user. Here, system
personalization, or its strategic conformance, refers to the
apparent decision making strategy match between human and
automation/AI systems [4]. Conformal (personal) automation
may reduce the need for transparency, at least in situations
when the automation’s solutions match those of the human.

This study focuses on two constructs expected to underlie
human-AI interaction: the conformance of ML models and the
transparency of their output (i.e. solution). This paper presents
original research from experimentally manipulating these two
constructs in simulations with air traffic controllers (ATCOs)
to explore their main and interaction effects on a broad number
of ATCO perceptions and performance measurements. This
article builds on the theoretical framework of conformance
and transparency developed in the MAHALO project and
presented in Westin et al. [5].

Next, Section II overviews previous work in relation to con-
formance, transparency, and AI applications to ATC CD&R.



Section III presents the study method and a brief description of
the developed ML models for resolving conflicts. Section IV
presents the effects of ML model conformance and advisory
transparency on ATCO’s response to resolution advisories.
The implications of the findings to the ATC community is
discussed in Section V.

II. THEORETICAL FOUNDATION

A. Personalized decision support

Researchers have advocated for personalized systems that
conform to an individual’s needs and preferences [4], [6]–
[8]. Conformal systems supports understanding by providing
a solution that, in appearance, matches the strategy or solu-
tion preferred by the individual. Because conformance is an
attribute of the system, it requires that the system knows the
individual’s preferred decision making strategy or solution.

In ATC, Hilburn et al. [9] (the MUFASA project) simulated
conformal automation via unrecognisable replays of ATCOs’
previous CD&R performance. Results from sixteen ATCOs
showed that when given conformal resolution advisories (in
this case replays of their own solutions), they accepted and
agreed more with advisories and responded to them faster
compared to non-conformal advisories. For solving two-
aircraft conflict situations, Regtuit et al. [10] developed a group
conformal Reinforcement Learning (RL) agent that replicated
ATCO-like CD&R strategies based on ‘best practices’. Tran
et al. [11] had a RL system learn from ATCO’s conflict
resolutions during training, approaching conformance on a
group level. Van Rooijen et al. [12], [13] developed and trained
a Supervised Learning (SL) model using Convolutional Neural
Networks (CNN) on individual ATCOs’ CD&R performance
to output conformal (personal) conflict resolution advisories.
As input, the SL model used pixel data from interface images
of the Solution Space Diagram (SSD) CD&R support tool that
captured the ATCO’s conflict solutions. The model was tested
in an experiment with twelve novices (no ATC experience,
but some ATC familiarity). The model was trained with data
from each participant, resulting in twelve personal models.
Results showed that the conformal model was able to capture
differences in individuals’ CD&R strategies. The model’s
prediction performance was better for participants who were
more consistent in solving conflicts over time (significant
positive correlation). The conformal models were found to
perform significantly better than the reference group models
(trained on combined participant data).

B. Transparent decision support

Transparency is considered a key attribute of automation and
autonomous system, for making its behavior understandable
to the human [2], [3]. Research on automation and agent
transparency aims to increase human understanding, trust, and
acceptance of the system [14], [15]. Transparency has been
used to explain the behavior of agents and robots [16], why
a decision support system might err [17], or how close the
automation is to its performance envelope [18].

Approaches for achieving transparency are known in the AI
community as explainable AI (XAI) [19] and machine learning
interpretability [20]. In the context ML, transparency becomes
intrinsically difficult to achieve due to the amount of data
processed and complexity of the systems (e.g., multiple deep
layers, number of rules) that greatly exceed human abilities
to make timely sense of the data. A common explainability
approach for deep neural networks, which can be used in
either (un)supervised learning or reinforcement learning, is to
visualize which parts of the input (features) are most important
in generating an output [21]. Example methods in image
classification using convolutional neural networks (CNNs) are
the Pixel-Wise Decomposition (PWD), which uses heatmaps to
visualize individual pixels of the input image that determine
the output [22]. Another approach is the Visual Back Prop
(VBP) method, which uses masks to visualize the set of pixels
in the input image that determine the output [23].

There is a shortage of empirical findings to form stable con-
clusions on the benefits of transparency and how to visualize
and apply transparency in interface design [24], [25]. Research
on AI explainability has focused on building ML models and
deriving novel explanation methods [26] while neglecting the
underlying psychology of the end user - What do users need?
How are explanations presented and perceived? How can users
interact in a dialogue with the system?

C. AI applications to CD&R

Previous studies on ML methods for CD&R have largely fo-
cused on the conflict resolution problem using RL approaches
[11], [27]–[30], and only a few have focused on conflict
detection [31], [32]. Some studies have developed conformal
ML models [10]–[12], but none have explored transparency
and explainability issues. The ML method explored by Brittain
and Wei [28] is among the more advanced, relying on deep RL,
Proximal Policy Optimization (PPO), and a Deep Distributed
Multi-Agent Variable framework with attention networks. Tran
et al. [11] and Pham et al. [27] explored an advanced RL
approach making use of a Deep Deterministic Policy Gradient
(DDPG) algorithm. Most previous approaches have restricted
CD&R to a 2D representation of the environment (aircraft
fixed to one altitude) and limited resolution maneuvers to
heading changes. As an exception, Mollinga et al. [29] con-
sidered all three resolution types (heading, speed, altitude) for
solving conflicts.

III. METHOD

The experimental design was a 3x3 within participant de-
sign varying model conformance and advisory transparency.
Simulations were conducted in Italy (SIM1) and Sweden
(SIM2). The research question explored how model confor-
mance and advisory transparency of a ML CD&R decision
support system affected ATCOs’ performance and advisory
response in solving conflicts. Each simulation comprised three
steps: First a training pre-test was conducted that recorded
ATCOs’ resolution strategies as they solved two-aircraft clos-
ing conflicts. Second, the resolution data was used to train a
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ML group model and synthetically derive personal models. A
third optimized ML model was developed, nonconformal to
ATCO preferences (i.e., not making use of ATCO resolution
data as input) that tried to find an optimal solution according to
objectively defined parameters. The three models were used to
generate resolution advisories for use in the main experiment.
Third, in the main experiment the same ATCOs interacted with
an AI agent to solve conflicts, where the agent’s resolution
advisories varied in conformance and transparency.

A. Participants

In total, 34 ATCOs took part in the study. Erroneous data
was observed for two participants, resulting in a final sample
of eighteen ATCOs in SIM1 and fourteen ATCOs in SIM2. In
SIM1, age varied between 35-59 years (M = 45.9, SD = 7.6)
and experience between 9-36 years (M = 21.3, SD = 7.3). In
SIM2, age varied between 32-55 years (M = 43.0, SD = 7.2)
and experience between 4-30 years (M = 16.5, SD = 7.6).

B. Independent variables and dependent measures

ML model conformance reflected the similarity of the
ML model with ATCOs’ resolution preferences for specific
scenarios. Three conditions were used: 1) personal models
(matching the ATCO’s preference), 2) a group model (match-
ing the preference of the group of ATCOs in the study
sample), 3) and a nonconformal optimized model (disregarding
ATCO preferences). The models generated advisories that
differed in timing, aircraft selected, heading direction and
value, and target closest point of approach (CPA). Advisory
transparency had three conditions that varied the amount of
information provided about the underlying rationale for an
advisory, reflecting the target CPA of the advisory. Figure 1
depicts the advisory transparency conditions: 1) low: vector
line (T0); medium: vector line and SSD (T1); and 3) high:
vector line, SSD, and text-based explanation (T2). The T0
condition corresponded to a baseline level of transparency
where no additional information is provided beyond the actual
advised heading. The T1 condition was based on the SSD
that integrates speed (by concentric green rings) and heading
(via red no-go zones) in visualising the relative position of
another aircraft. The T2 condition added a text explanation of
the chosen solution including target CPA. The seven dependent
measures collected are shown in Table I.

C. Conformal machine learning models

Two ML models were created: a SL model and a RL
model. The SL model created for generating personal and
group advisories was based on previous work [13]. The model
uses CNN to process pixel (128x64) SSD graphical data as
input. For a given conflict, the SL model strove to find the
best match of the conflict situation (input data in terms of
images of conflict situation) with a label. For a two aircraft
conflict situation, the SL model comprised different labels
reflecting alternative solutions with varying heading values.
The sixteen labels were made up by five degree heading
intervals ranging from -45 to +45 degrees deviation from the

current heading (except for heading values around zero degrees
that were labeled -10 to -1 and +1 to +10). During training
of the SL model, a participant’s conflict resolutions were
classified according to these labels. E.g., a person’s solution
that consisted of turning aircraft A 15 degrees to the right
was assigned to the label: aircraft A, 11-15 degrees. Because
of limited data, the learning stability and performance of the
personal ML models was inadequate. Personal models (one
for each participant) were therefore synthetically created from
analysing consistent patterns in individual ATCO’s resolutions
to repeated conflict situation in the training pre-test simulation.
This resulted in 34 unique personal models. For the group
conformal model, sufficient data were collected to allow
adequate model performance. The SIM1 group model was
trained on SIM1 data only (720 resolution samples), while
the SIM2 group model was trained on both SIM1 and SIM2
data (1296 resolution samples).

Figure 1. Transparency conditions in SectorX.

TABLE I. DEPENDENT MEASURES

Measure Description

Advisory
acceptance

Ordinal categorical SIM1: four-point scale; SIM2: five-
point scale). Accept (accept as given); Nudge (preserve
aircraft choice, heading type, and direction but nudge
heading by e.g., adding 5 degrees); Adjust (preserve
aircraft choice and heading type but change heading
direction by e.g., turn left instead of right); Change
(preserve aircraft choice but change clearance type to ver-
tical); and Reject (only in SIM2). Rejecting the advisory
allowed for interaction with the other aircraft involved
in the conflict (not possible earlier). See Figure 2 for
how interactions with an advisory was implemented in
the SectorX simulator.

Agreement 0-100 rating scale.
Advisory con-
formance

Six point likert rating scale (1 = disagree highly, 6 = agree
highly) with statement: ”The system solved the conflict
the same way I would have.”

Advisory
understanding

Six point likert rating scale (1 = disagree highly, 6 =
agree highly) with statement: ”I can understand why the
system suggested that solution.”

Workload 0-100 rating scale.
Response time Measured in seconds from onset of advisory to response

(execute/reject button pressed).
Delta CPA dis-
tance

Difference in nautical miles (nm) between proposed
separation distance of advisory and achieved separation
distance in solution (as modified by participant).
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For generating optimized advisories, a RL model was
created that did not use ATCO derived training data. The
RL model used sector and traffic information (e.g., aircraft
location, velocity, heading) as input, as well as information on
the given traffic advisory (pixel data). A Q-Learning agent was
coupled with the modified voltage potential (MVP) model of
CD&R, which achieves separation assurance by representing
other aircraft and destination as similar- and opposite poten-
tials, respectively [33]. In both SIM1 and SIM2, the optimized
RL model corresponded to this Q-learning algorithm adjust-
ing the parameters that determine the behavior of the MVP
algorithm. The main parameters the Q-learning agent adjusted
were the separation distance and lookahead time at which the
MVP algorithm would provide the heading change commands.
The RL model was optimized for avoiding loss of separation
and minimizing flight path deviation. Because of differences
in options given to the agent for SIM1 and SIM2, e.g., for
possible lookahead times and CPA, the advisories output by
the RL model were different between simulations. There is no
explicit model of the environment provided to the agent and
the vectors are selected to minimize the cost function.

D. Simulator and scenarios

The SectorX simulation platform was used as a radar inter-
face. SectorX is a Java-based medium-fidelity ATC research
simulator. The interface design and support tools (e.g., the
Verification of Separation and Resolution Advisory - VERA
tool) was based on actual radar displays at the Eurocontrol
operated Maastricht Upper Area Control Centre (MUAC).
Flight dynamics conform to BADA flight performance models.
SectorX was run on a Windows laptop connected to an external
28” display with a resolution of 1920 x 1080. Participants
interacted via mouse and keyboard and could solve conflicts
using heading and altitude via a clearance menu (see Figure 2).

For the training pre-test, six reference scenarios were cre-
ated with a maximum sector occupancy of 22 aircraft, each 2.5
minutes long running at twice the real-time speed (representing
five minutes real time movements). We decided to use short
traffic vignettes as a trade-off between maximizing the input
data to the conformance ML models (i.e., number of scenarios
and conflict resolutions generated) and retaining a realistic
simulation exercise. The approach was found acceptable by
fourteen ATM experts and ATCOs participating in a workshop
prior to the experiments. Scenarios were based on a 100 x
100 nm generic sector in an approximately octagonal shape
(see Figure 3) that allowed creation of unrecognisable scenario
variants (via rotation). Altitudes were within reduced vertical
separation minimum (RVSM) airspace, FL290 to FL410. All
scenarios were scripted to present a single same-altitude two-
aircraft closing conflict with a CPA of 0 nm to reduce solution
bias. For the main experiment, two of the six reference
scenarios were used: Scenario A (Scen.A) had a 68 angle
conflict between two aircraft and Scenario B (Scen.B) a 134
angle conflict between two aircraft. The scenarios are shown
in Figure 3. While identical to the ones used in the training
pre-test in terms of airspace, traffic, and conflicts, the scenarios

Figure 2. Advisory interactions in SectorX.

Figure 3. Scenarios in main experiment with conflict aircraft annotated in red:
a) Scen.A (left), and b) Scen.B (right)

were adapted during the interim ML training phase to incor-
porated automated CD&R solutions and support supervisory
control procedures. Because every scenario and conflict can
be considered unique, we chose to use two different scenarios.
The same scenario was used for all experimental conditions
(i.e. reflecting the two independent variables with three levels)
to avoid scenario and conflict design as confounding variables.
Availability of ATCOs (i.e., three hours) restricted the use of
more scenarios.

E. Procedures

Identical procedures were used in SIM1 and SIM2. In the
training-pre test, ATCOs solved 36 conflicts (six scenarios
repeated six times) in manual control. Air–ground commu-
nication was carried out via datalink with no radiotelephony
(RT) was required. Participants were instructed to ensure
separation between aircraft and make sure aircraft leave the
sector through their assigned exit waypoint at the correct
flight level as indicated by their flight plan. Each task is
equally important. Before the test started, consent forms and
a demographics questionnaire was administered. Participation
lasted for three hours. The training pre-test data was used
to train the group ML model and synthetically derive the
personal models. The duration between the pre-test and main
experiment was six weeks for SIM1 and four weeks for SIM2.
For the main experiment, the same ATCOs interacted with ML
solved analogues of Scen.A and B. Their task was to supervise
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an automated agent managing the routine ATC tasks including
assuming flights, handover flights, issue climb and descent
clearances, and direct to clearances when conflict free. The
agent detected conflicts and provided resolution advisories to
which the ATCO had to respond. ATCOs played eighteen runs
where Scen.A and B was repeated nine times each to achieve
a complete variation of the conformance and transparency
variables. Figure 4 shows the simulator environment for the
main experiment. Run order varied according to a Latin Square
to mitigate effects of learning, boredom, and complacency.

In each run, a heading advisory was issued with respect
to a conflict pair. The ATCO responded by either accepting
with or without revising the advisory by clicking “EXECUTE”
(directly, or followed by a nudge, adjustment, or change),
or by clicking “REJECT” (only SIM2, see Figure 2). At
this point the simulator paused and the ATCO was prompted
to provide ratings for advisory agreement, conformance, and
understanding. The simulation resumed after all ratings were
collected. At the end of the run, the ATCO provided a
workload rating.

Figure 4. Simulator setup showing participant responding to an advisory at the
highest transparency level (T2) in SectorX. Animations of a typical experiment
session can be seen here: http://mahaloproject.eu/?page id=133.

F. Data analysis

Data from SIM1 and SIM2 were analysed separately due
to differences in the generation of ML advisories (SL and RL
models) and SectorX interface (i.e., acceptance interaction).
Statistics were calculated in SPSS v.28. Repeated measures
ANOVAs were applied for analysing continuous data, us-
ing pairwise post-hoc tests with Bonferroni adjustments for
multiple comparisons. Ordinal data was analysed using non-
parametric Friedman’s ANOVAs, using Wilcoxon signed-rank
post-hoc tests with a Bonferroni corrected significance level
of p < 0.006. Mann Whitney U tests were used for comparing
participant groups. Given inter-respondent variability in agree-

ment ratings, workload ratings, and response time, data were
normalized into within-participant calculated Z scores.

IV. RESULTS

Results are divided in two parts. First, the main and interac-
tion effects for SIM1 (n = 18) and SIM2 (n = 14) are presented.
Second, comparisons between groups of ATCOs’ responses to
optimal advisories are presented. Table II details the groups
created. Because the SL and RL models were developed in
isolation (independent variables), for some ATCOs and sce-
narios the different advisories were found to be similar (e.g.,
an ATCO’s personal advisory was similar to the optimized
advisory or group advisory. Moreover, it was observed that
ATCOs tended to form a bimodal distribution in terms of
their average separation margin during the training pre-test.
To explore this, ATCOs were divided in groups using a binary
split based on the deviation of their average separation distance
from the CPA aimed for by the optimal advisory.

TABLE II. SEPARATION DISTANCE DEVIATION (NM) FROM OPTIMAL AD-
VISORY CPA FOR ATCO GROUPS.

SIM1 (n = 9 / group) SIM2 (n = 7 / group)
Scen.A Scen.B Scen.A Scen.B

Group / Optimal CPA 6.6nm 7.7nm 10.7nm 10.5nm

Closer to optimal < 2.3nm < 1.0nm < 2.5nm < 2.7nm
Farther from optimal > 2.5nm > 1.1nm > 2.5nm > 2.9nm

A. Effects of conformance and transparency

Statistical results from the repeated measures ANOVAs are
shown in Table III, and from the non-parametric Friedman’s
ANOVAs in Table IV. Only conditions and measures where
significant findings were found are shown.

TABLE III. SIGNIFICANT MAIN AND INTERACTION EFFECTS IN SIM1 AND
SIM2 SCENARIOS. REPEATED MEASURES ANOVA WITH p < .05.

SIM1 SIM2
Measure Scen.A Scen.B Scen.A Scen.B

Conformance effects

Agreement p = .003 p < .001 p < .001
Workload p = .044
Delta CPA p = .007 p = .046 p < .001
Response time p = .005

Interaction effects between transparency and conformance

Agreement p = .011

TABLE IV. SIGNIFICANT EFFECTS ACROSS CONFORMANCE AND TRANS-
PARENCY CONDITIONS IN SIM1 AND SIM2 SCENARIOS. FRIEDMAN’S
ANOVA WITH p < .05.

SIM1 SIM2
Measure Scen.A Scen.B Scen.A Scen.B

Acceptance p = .001 p < .001 p = .006
Advisory conformance p < .001 p < .001 p = .001
Advisory understanding p < .001 p = .002
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1) Acceptance: A significant effect of conformance and
transparency on participants’ acceptance response (see Table
IV) as found in SIM1 Scen.A (X2(8) = 25.49, p = .001), SIM2
Scen.A (X2(8) = 30.17, p < .001), and SIM2 Scen.B (X2(8)
= 21.67, p = .006). In SIM1 Scen.A, optimal advisories were
generally accepted as given compared with group and personal
advisories that generally were nudged (i.e., slightly adjusting
the heading before accepting the advisory, see Figure 2).
While post-hoc tests were not significant, trends were observed
favouring optimal advisories over group advisories (Z = -2.74,
p = .006) in the low transparency (T0) condition. Similarly,
optimal advisories were favoured over group advisories (Z
= -2.65, p = .008) and personal advisories (Z = -2.71, p =
.007) in the medium transparency (T1) condition. In SIM2
Scen.A, personal advisories were generally accepted as given
compared with optimal advisories that often were nudged,
and group advisories that often were nudged or adjusted.
Post-hoc tests revealed a significant difference in the low
transparency (T0) condition, where optimal advisories were
favoured over group advisories (Z = -2.84, p = .004). In SIM2
Scen.B, personal and group advisories were generally accepted
as given compared with optimal advisories that often were
nudged or adjusted. The post-hoc analysis showed a significant
difference in acceptance response for the high transparency
(T2) condition, where group advisories were favoured over
optimal advisories (Z = -2.79, p = .005).

2) Agreement ratings: Significant effects of conformance
on agreement ratings were measured in SIM1 Scen.A (F(2,
34) = 8.68, p = .003), SIM2 Scen.A (F(1.82, 23.62) = 14.50,
p < .001), and SIM2 Scen.B (F(2, 26) = 20.02, p < .001).
For SIM1 Scen.A, post-hoc analysis (pairwise comparisons)
showed that optimal advisories had significantly higher agree-
ment than personal (p = .028) and group advisories (p =
.021). For Scen.B, a significant interaction effect was found
between conformance and transparency (F(4, 68) = 3.57, p =
.011). A subsequent contrasts analysis revealed that agreement
increased for group advisories as the level of transparency
increased from T0 to T2, while they decreased for personal
advisories (F(1,17) = 6.45, p = .021) and optimal advisories
(F(1,17) = 10.96, p = .004). In SIM2, Scen.A, a significant
effect was observed for conformance level on agreement rat-
ings (F(1.82, 23.62) = 14.50, p < .001). Pairwise comparisons
showed that personal (p = .003) and optimal (p = .002)
advisories received significantly higher agreement ratings than
group advisories. In Scen.B, a contrasting significant effect of
conformance level on agreement was found (F(2, 26) = 20.02,
p < .001). Personal (p < .001) and group (p < .001) advisories
received significantly higher agreement ratings compared to
optimal advisories.

3) Workload ratings: For workload, the only difference
was observed for the conformance variable in SIM1 Scen.B
(F(2,34) = 3.43, p = .044). Pairwise comparisons showed that
workload increased as conformance decreased, with the largest
difference between personal and optimal advisories, although
not significant (p = .072).

4) Delta CPA: Model conformance was found to signifi-
cantly affect Delta CPA distance in SIM1 Scen.A (F(2, 34) =
5.82, p = .007), SIM2 Scen.A (F(2,26) = 3.46, p = .046),
and SIM2 Scen.B (F(2,26) = 14.63, p < .001). Pairwise
comparisons in SIM1 Scen.A showed that optimal advisories
had significantly lower delta CPA distances than personal
advisories (p = .014) and group advisories (p = .037). To
illustrate the differences, participants’ deviations were smaller
for optimal advisories (M = 0.54 nm) compared to personal
advisories (M = 1.62 nm) and group advisories (M = 1.52 nm).
In SIM2 Scen.A, pairwise comparisons were not significant,
but the conformance graph revealed that delta CPA distances
increased from personal (M = .70 nm), to group (M = 1.45
nm), and optimal advisories (M = 2.02 nm). In SIM2 Scen.B,
pairwise comparisons showed that optimal advisories had
significantly higher delta CPA distances compared to personal
advisories (p = .006) and group advisories (p = .002).

5) Response time: A significant effect of conformance on
response time was measured in SIM2 Scen.A (F(2,26) =
6.43, p = .005). Post-hoc pairwise comparisons showed that
participants reacted significantly faster to personal advisories
compared to group advisories (p = .003).

6) Advisory conformance ratings: Significant differences
across conditions in ratings of the advisory’s similarity to
the ATCO’s preferred solution was observed in SIM1 Scen.A
(X2(8) = 26.63, p < .001), SIM2 Scen.A (X2(8) = 45.96,
p < .001), and in SIM2 Scen.B (X2(8) = 25.66, p = .001).
In SIM1 Scen A, optimal advisories were consistently rated
higher than both group and personal advisories. Post-hoc tests
revealed a significant difference in the low transparency (T0)
condition with personal advisories being rated less similar
to own preference than optimal advisories (Z = -2.81, p =
0.005). In SIM2 Scen.A, personal and optimal advisories were
consistently rated higher than group advisories. Post-hoc tests
found a significant differences in the low transparency (T0)
condition with personal advisories being rated more similar to
own preference than group advisories (Z = -2.82, p = 0.005).
A significant difference was also noted in the medium trans-
parency (T1) condition with personal advisories being rated
higher than group advisories (Z = -2.95, p = 0.003). In SIM2
Scen.B, personal and group advisories were consistently rated
higher than optimal advisories but not reaching significance.

7) Advisory understanding ratings: Significant effects of
experimental condition were found in SIM2 Scen.A (X2(8)
= 36.72, p < .001) and SIM2 Scen.B (X2(8) = 24.53, p =
.002). Post-hoc tests did not reach significance in either Scen.A
or Scen.B. However, in Scen.A the noticeable larger IQR for
group advisories (IQR for T0 = 3-6, T1 = 3-5.3, T2 = 3-5.3),
compared to personal (IQR for T0 = 5-6, T1 = 6-6, T2 = 4.8-
6) and optimal advisories (IQR for T0 = 5-6, T1 = 3.8-6, T2 =
5-6), indicates that group advisories were less understandable.
For Scen.B, a similar pattern was found between optimal (IQR
for T0 = 3.8-6, T1 = 4-6, T2 = 3-5.3), personal (IQR for T0
= 5-6, T1 = 5-6, T2 = 5-6), and group advisories (IQR for T0
= 5-6, T1 = 5-6, T2 = 5-6), indicating that optimal advisories
were less understandable.
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B. Group analysis of conformance and transparency effects

Group effects were only analysed for optimal advisories.
Table V shows the significant results from the statistical
analysis comparing the groups in II.

TABLE V. SIGNIFICANT DIFFERENCES BETWEEN ATCO GROUPS DEPEND-
ING ON THEIR SEPARATION DISTANCE PREFERENCES IN RELATION TO THE
TARGET CPA IN THE OPTIMAL ADVISORY IN SIM1 AND SIM2 SCENARIOS.
MANN WHITNEY U TESTS WITH p < .05. THE SUBSCRIPT SHOWS THE
TRANSPARENCY CONDITION.

SIM1 SIM2
Measure Scen.A Scen.B Scen.A Scen.B

Agreement = .031T0 = .031T2
Workload = .004T1
Delta CPA < .001T2 = .038T2
Response time = .026T0
Acceptance = .014T2
Advisory confor. = .050T2 = .017T0
Advisory underst. = .031T2 = .038T0

1) Acceptance: A significant difference between groups on
advisory acceptance of optimal advisories was found in SIM1
Scen.B for the high transparency (T2) condition (U = 13.00, z
= -2.73, p = .014). The group whose preferences were closer
to the optimal advisory CPA had a higher acceptance rank than
the group farther away. Differences in the same direction was
found between groups in the T0 and T1 conditions, but not
reaching significance. In SIM2 Scen.B a trend was observed
for the medium transparency (T1) condition (U = 39.5, z =
1.99, p = .053). The ”closer” group had a higher acceptance
rank than the group ”farther” from the optimal advisory.
Differences in the same direction was found between groups
in the T0 and T2 conditions but not reaching significance.

2) Agreement ratings: Groups differed significantly in their
agreement ratings of optimal advisories in SIM1, Scen.A for
the low transparency (T0) condition (U = 65.00, z = 2.16,
p = .031). The ”farther” from group had a higher agreement
ratings than the group closer to the optimal advisory CPA. In
the high transparency condition (T2), the relationship between
groups had changed so that the ”closer” group had higher
agreement ratings compared to the ”farther” from group,
although not significant (U = 21.00, z = -1.72,p = .094). A
significant difference was also found in SIM2 Scen.B for the
high transparency (T2) condition (U = 16.00, z = -2.16, p
= .031). The group closer to the optimal advisory CPA had
higher agreement ratings than the group farther away.

3) Workload ratings: In SIM2 Scen.A, a significant differ-
ence was found between groups on workload ratings in the
medium transparency (T1) condition (U = 3.00, z = -2.75, p =
.004). Workload ratings were lower for the group closer to the
optimal advisory CPA compared to the group farther away.

4) Delta CPA: In SIM1 Scen.B, groups differed signifi-
cantly on delta CPA distance in the high transparency (T2)
condition (U = 76.50, z = 3.50, p < .001). The group closer
to the optimal advisory CPA had smaller delta CPA values
compared to the other group. The ”closer” group had a Mdn
0 nm deviation, in contrast to a Mdn 2.57 nm deviation for

the ”farther” group. Differences between groups were in the
same direction for the T0 and T1 conditions but not reaching
significance. A significant difference was also found in SIM2
Scen.B for the T2 condition (U = 8.5, z = -2.06, p = .038).
The ”closer” group had smaller Delta CPA values compared
to the ”farther” group. While both groups acted to reduced
separation, the ”farther” group made bigger changes (Mdn =
3.24 nm) compared to the ”closer” group (Mdn = 1.05 nm).
Similar patterns were observed for the T0 and T1 conditions,
although not reaching significance.

5) Response time: In SIM2 Scen.A, groups differed signif-
icantly in the low transparency (T0) condition (U = 7.00, z
= -2.24, p = .026), with the ”closer” group responding faster
than the ”farther” group.

6) Advisory conformance ratings: A significant difference
was found between groups on advisory conformance ratings
in SIM1 Scen.B for the high transparency (T2) condition
(U = 18.50, z = -2.08, p = .050). The group closer to the
optimal advisory CPA had rated advisories as more similar to
their own solution compared to other group. Similar patterns
were observed for the T0 and T1 conditions, but not reaching
significance. In SIM2 Scen.B, groups differed significantly for
the low transparency (T0) condition (U = 43.00, z = 2.44,
p = .017). The ”closer” group had higher ratings compared
to the ”farther” group. Similar patterns were observed for
conformance ratings in the T1 and T2 conditions, although
not reaching statistical significance.

7) Advisory understanding ratings: In SIM1 Scen.A,
groups differed significantly on their understanding of optimal
advisories in the high transparency (T2) condition (U = 16.50,
z = -2.43, p = .031). The group closer to the optimal advisory
CPA rated their understanding of the advisory higher compared
to other group. In SIM2 Scen.B, a significant difference was
found in the low transparency (T0) condition (U = 41.00, z =
2.18, p = .038). The ”closer” group had higher ratings than
the ”farther” group. A similar difference were observed in the
T1 condition, although not significant.

V. DISCUSSION

A. Conformance effects

The effects of ML model conformance were not consis-
tent across simulations and scenarios. Personal advisories
generated higher ratings of agreement and conformance and
lower delta CPA distances in SIM2 Scen.A and B. In SIM1
Scen.A, however, optimal advisories received higher ratings of
agreement and conformance and lower delta CPA distances.
In SIM2 Scen.A, ATCOs rated group advisories as less agree-
able, conformal, and understandable. In contrast, responses to
group advisories were more positive in SIM2 Scen.B. Here,
optimal advisories received the lowest ratings for agreement,
conformance, and understanding, while also resulting in higher
delta CPA distances. Why are we seeing these different effects
of conformance condition on dependent measures?

A possible explanation can be found in how the con-
formance models were defined. The personal models were
the least stable given the limited sample size (six resolution
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samples) for their definition. While a few ATCOs in each
Simulation were found highly consistent in the training pre-test
(e.g., turning the same aircraft to the right behind the other in
all repetitions, achieving a similar CPA), the majority showed
variations in choice of aircraft, turn direction and achieved
CPA. Moreover, the optimal models were qualitatively very
different in both simulations (see Table II. In SIM1, the
optimal advisory, compared to most personal models, had a
tighter target CPA (6-7 nm), smaller heading value (around 15
degrees), and was provided earlier (20 seconds into scenario).
In SIM2, however, the optimal advisory was provided later
than most personal models (96-114 seconds into scenario)
and with a larger CPA ( around 10.5 nm). As a reference,
the group model generated advisories that in both simulations
and scenarios better reflected the ”average” personal model.

B. Transparency effects

It was hypothesised that ATCOs’ reactions and perceptions
of advisories would be higher if advisories were presented
in higher transparency display formats. While no significant
main effects of transparency were found, the data points in
the opposite direction - that increased transparency negatively
affected ATCOs’ responses to advisories. The transparency
variables provided qualitatively different information about
the CPA that the model was aiming for. With more detailed
information about the target CPA, it becomes easier for ATCOs
to compare the proposed CPA with their separation margin
preference. If the difference is large it is more likely that
the advisory is interfered with (e.g., by adjusting the heading
to reduce or increase the separation distance to get closer to
the preferred CPA). Transparency and explainability should
increase acceptance and agreement for an optimal algorithm,
but it should also decrease acceptance and agreement for a
sub optimal algorithm. But because what is ”optimal” partly
depends on the user’s preferences, this general objective of
transparency is misleading. The more suitable transparency
objective is to increase the user’s understanding of the automa-
tion, to support an informed decision on whether the system’s
solution or behavior is suitable for the given situation. Impor-
tantly, and increased understanding does not not necessarily
increase agreement and acceptance.

C. The influence of separation distance preferences

Advisories target CPA between conflicting aircraft was
found to be an important factor reflecting ATCO’s individual
resolution preferences. Results showed that ATCOs’ response
to optimal advisories depended on the advisory’s conformance
with personal CPA preferences. The closer the match, the more
positive was the response to the advisory. In the group analysis,
a reoccurring pattern emerged where the ”closer” group (to
optimal CPA) showed unchanged or more positive responses
to optimal advisories with increasing transparency. That is,
their acceptance and ratings for agreement, conformance, and
understanding of advisories was higher compared with the
other group. Also, their delta CPA tended to be smaller.
The ”farther” group generally had a less positive response as

transparency increased. Here, increased transparency tended
to result in more changes to the advisory (i.e., reduced ac-
ceptance response), lower ratings of agreement, conformance,
and understanding, and larger Delta CPA values (an exception
was SIM2 Scen.B).

The traditional system design approach is to design a system
that all operators have to conform to. This is sensible for
many standard operating procedures and tasks or decision
that easily can be optimized. This makes less sense, however,
for time and safety critical situations where the definition of
what is an optimal solution is subjective and performance
depends more on the operator’s capacity to cope with the tasks
(and avoid peaks of workload and stress). In environments
such as tactical CD&R, we want to avoid the human and
automation/AI disagreeing (or ”arguing”) on how to solve a
particular problem.

D. Personal machine learning models

The study revealed ATCO variability where differences both
within and between ATCOs presented challenges to training
the SL conformance models. Regardless of ML approach,
the robustness of a personal model is highly dependent on
the internal consistency of that ATCO in choosing solutions
(i.e., the extent to which a given ATCO solves the same
conflict the same way every time). For example, low within-
ATCO consistency reduces the robustness of a personal model.
Similarly, the robustness of a group model is highly dependent
on the extent to which ATCO’s agree on solutions. If between-
ATCO consistency is low, the group model becomes less
representative of the group. Further, both SL and RL models
add the additional challenge that there is still a great deal of
artistry required in designing/configuring the model, e.g., in
terms of defining labels or the reward structure. It can not be
expected that all decision making tasks are suitable for person-
alized applications. For instance, for problems where optimal
objectives are unambiguous and where subjective preferences
are less relevant, there is little incentive to personalize. The
same applies to tasks or problems where there is consensus
between operators on how to act.

E. Future research

First, an avenue to explore is the potential utility of per-
sonalisation, or tuneable parameters that might allow for a
hybrid of the optimal and personal model view. Such that
ATCOs could tune certain parameters within the confines of
an advisory system that strives to optimize performance. This
study suggests that separation margin appears to be the most
prominent tuneable parameter to explore. Second, research on
ML approaches is needed for determining how to best derive
robust personal models given accessibility limitations to large
amounts of individual data. An associated challenge regards
how to train these models, what data to consider, and how to
preprocess the data (e.g., label or feature definition, reward
functions etc) to best capture end users’ preferences.

Finally, future research is required to explore and better
understand the impact of system transparency on acceptance
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and system trust. In contrast to expectations, increased trans-
parency had in some cases an inverse effect with accep-
tance and agreement reaching higher values in the lowest
transparency condition. The probability for an explanation to
achieve its goal depends to a large extent on what the user
is trying to understand. Therefore, research is welcomed on
personalized transparency functions that allows the system to
determine what the operator is trying to understand and what
the operator’s preferences are. As a next step, systems should
be able explain why a proposed action/solution is better than
that preferred by the operator (if different).

VI. CONCLUSION

This study has demonstrated that personalization helps in
making an AI-based advisory system more acceptable and
easier to work with (e.g., reduce interventions). Personalization
can therefore be seen as a way to overcome some of the
challenges associated with integrating ML/AI techniques in
ATC from the perspective of human-machine collaboration.
Furthermore, a person’s response to a resolution advisory
partly depends on how close that advisory is to the person’s
solution preferences. Systems that are more personalized may
also lessen the need for system transparency. Future ATC
systems should acknowledge and embrace in the design that
controllers differ in their conflict resolution preferences and
that ATCOs can be grouped according to similarities in their
decision making strategies.
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