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Abstract—Increasing airspace demand requires an increase in
effectiveness and efficiency of the ATC system. Automation, and
specifically Machine Learning (ML), may present good prospects
for increasing system performance and decreasing workload of
ATCOs. AI, however, is typically a “black box” making it hard
to include in a socio-technical environment. This exploratory
research aims to increase operator trust and acceptance and move
towards a more “cooperative” approach to automation in ATC.
It focuses on building upon previous efforts by using two dif-
ferent approaches: Strategically Conformal AI and Explainable
AI methods to AI-Human interactions. Strategic Conformance
aims to increase acceptance by producing individual-sensitive
advisories. Explainable AI focuses on producing more optimal
solutions and providing a clear explanation for these solutions.
In this article, we propose the use of a single visual representation
for tactical conflict detection and resolution, called the Solution
Space Diagram (SSD), to serve as a common ground for both
explainable and conformal AI. Through this research, it has
become clear that there needs to be a careful definition given both
to optimality and conformance. Likewise, the training of the AI
agents comes with requirements for a large amount of data to be
available and displaying these solutions in a human-interpretable
way, while maintaining optimality, has its own unique challenges
to overcome.

Keywords—Machine Learning; Human Machine Interaction;
Decision Support Systems

I. INTRODUCTION

All conflict resolution ATC tasks are currently performed
manually, by Air Traffic Controllers (ATCOs), and thus are
limited by the controller’s performance and capabilities. An
ATCO can only handle a limited number of aircraft simulta-
neously, making this the main bottleneck of the system under
increased traffic densities and more stringent performance
requirements. Even though the current SARS-COVID2 pan-
demic has led to a decrease in overall air traffic, this demand
is expected to reach (and even surpass) pre-pandemic levels
shortly.

One promising way to handle increased traffic densities and
increased performance requirements is to increase the level of
automation. The capabilities of advanced automated systems,

such as Artificial Intelligence (AI) based agents, are promising
[1] [2] [3] [4] [5] [6]. Therefore, it would seem that the key
to success is to either fully automate the system or provide
automated solutions to the ATCOs as advisories.

The first option is currently not being considered due to
several factors such as liability and the automation not being
reliable enough to predict and act upon every conceivable (or
unexpected) scenario and conflict. Following this rationale,
SESAR’s ATM master plan suggests to a move towards super-
vised control, where humans play a central role in overseeing
the automation’s performance and intervene whenever desired
or required.

Supervisory control, however, may also come with its own
problems, as articulated by Bainbridge’s pivotal paper called
the ”Ironies of Automation”. Additionally, previous research
has shown that ATCOs’ distrust of automation risks it being
disused. Thus having effective automation for solution advi-
sories will be useless if it is underused by the people it is meant
to support. Research indicates that this lack of trust comes
from the ATCOs’ limited understanding of the automation,
fears concerning job security and the limited experience with
AI. Since ATCOs are still the ones ultimately responsible
for the decisions made in the ATC domain, they tend not to
use solutions given by automation they cannot understand or
properly monitor. This issue is compounded by the fact that
AI agents tend to be opaque in terms of their function, being
often referred to as “black boxes.”

To increase operator trust and acceptance and move to-
wards a more “cooperative” approach to automation in ATC,
we suggest to adopt two different approaches: Strategically
Conformal AI and Explainable AI methods. Strategically
Conformal AI builds upon previous research by Westin et
al. [7]. In that research, it was shown that having solutions
presented to the ATCO that match personal preferences tends
to increase acceptance. Therefore, Machine Learning (ML) can
be used to learn how to replicate ATCO strategic preferences
and give strategically conformal solution advisories. The un-



derlying ML method to achieve strategic conformal AI has
been initiated in the research by Van Rooijen et al. [8]. The
main disadvantage of 100% conformal automation would be
that mimicking an ATCO’s control actions might include sub-
optimal actions.

To increase acceptance of AI models that generate more
optimal control actions, giving the ATCo insights into the AI
model might be helpful. Here, Explainable AI (XAI) methods
would allow for explanations to be given to the ATCo. Ideally,
XAI can allow for an AI agent to focus solely on optimality,
while providing sufficient context for its solution such that the
ATCO is able to understand and monitor the decision-making
process of the automation.

In this article, we introduce a single visual representation
to serve as inputs to achieve both conformal and optimal AI-
based automation. The visual representation is the so-called
Solution Space Diagram (SSD), which has originally been
designed as a tactical decision-support tool for ATCos in
performing (manual and supervisory) conflict detection and
resolution (CD&R). The SSD is an interface that is based on
Velocity Obstacles (VOs) and displays the free space maneuver
space in terms of heading and speed of the aircraft [9], a
graphical abstraction of it can be seen in Figure 1.

Being a successful tool in supporting ATCo decision-
making, we hypothesize the SSD to be equally useful as a
way to communicate the system state (including conflicts and
potential solutions) to an artificial agent. Additionally, given
that the SSD has been designed as a decision-support tool, the
pixel input to the machine learning agents will be interpretable,
thus contributing to XAI.

Within this research, the Conformal AI will be developed
under a Supervised Learning (SL) framework whereas the
XAI will be developed under a Reinforcement Learning (RL)
framework. The reasons behind this choice will be expanded
upon in section II. A Hybrid agent that is made up of both
conformal and optimal considerations will also be presented
and is currently a topic being explored.

Section II contains information on what automation is used
and what kind of inputs it receives. The overall system setup
is described in section III. Section IV contains an overview
of the experiments to be conducted and the hypotheses to be
tested in them. In section IV-B the results achieved so far will
be presented and in section V a discussion on the results and
the limitations of the approach is provided. This article ends
with a series of conclusions in section VI.

II. CONFORMAL AND OPTIMAL AI AGENTS

Within this research, two different AI agents will be used.
For the Conformal automation, a SL agent based on Convo-
lutional Neural Networks (CNN) will be used, since SL is
particularly suited to learning to replicate rather than derive
solutions. For the “Optimal” automation a RL agent will be
used. RL agents are capable of learning how to improve
their performance through interaction with the environment.
One appealing feature of RL, specifically for this research, is
that it works primarily through designing a reward function

Figure 1. Graphical abstraction of an SSD, from [10]

that shapes the RL agent’s behaviour. Shaping this reward
function is, however, not always trivial and may require careful
considerations.

A. SSD: Definition

Originally, The SSD was based on the principles underlying
the Ecological Interface Design (EID) framework [11] [12]
[13]. Therefore, it aims to provide information about the deep
structure of physical constraints (and their relationships) of the
traffic system to the ATCO. Results of previous experiments
[7] suggest that the SSD can increase situation awareness and
performance of an ATCO while performing both manual and
supervisory CD&R tasks.

The SSD construction is as illustrated in Figure 2 where two
aircraft, ACcon and ACobs can be seen, and shows the solution
space of the controlled aircraft. This means that it not only
provides information on the current conflict, but also on the
constraints an ATCO should respect when giving a resolution
command, such as the speed envelope and the desired direction
to the exit waypoint. This information allows the ATCO to
consider both the efficiency of the command when it comes
to flight path deviation and also the robustness and safety of
that command. It has also been shown, in previous research,
to work adequately as an input to ML agents [8], [14].

B. Supervised Learning

The system used for the conformal agent is based upon the
work of [8]. This system provides the ATCO with personalized
solutions for conflicting aircraft. As mentioned above, the
artificial agent receives a cropped SSD as input. This SSD is
sized as a 128x64 pixel image. The reason for this is that, in



Figure 2. Construction of the SSD: a) The set of conflicting velocity vectors is shown by the grey area, b) this area is displaced by the velocity vector of
the intruding aircraft, c) The minimum and maximum velocity of the controlled aircraft limit the solution area creating the SSD. From [8]

TABLE I
SPECIFICATION OF NN LAYERS FOR THE SL MODEL

Convolutional Filter size: 2x2 Stride: 1x1 ReLU
Max-pooling Size: 2x2 Stride: 2x2 ReLU

First dense layer Dropout rate: 20% - ReLU
Second dense layer - - Softmax

experiments, it was shown that having the full SSD versus only
the top half does not further increase performance and it also
makes training more cumbersome. The SSD image is rotated
such that the current heading always upwards. An example of
this cropped SSD can be seen in Figure 3. The system’s output
is a solution advisory to the ATCO in the form of a heading
deviation from the current heading.

Figure 3. Example of the cropped SSD, showing the speed envelope, the
conflict zone, the exit direction (blue) and the current speed vector (green).
From [14]

The CNN model is made up of a series of three convolu-
tional layers interspersed with max pooling-layers, two dense
layers were then added at the end of the last max-pooling
layer. The output of the model has a size of 3. The parameters
of the hidden layers can be seen in table I

A hyper-parameter tuning process followed. The resulting
hyper parameters can be found in table II.

TABLE II
PARAMETERS OF THE SL MODEL

Parameters Value
Optimization Algorithm Adam

Loss function Cross-entropy
Train/validate ratio 80% / 20%

Batch size 4
Epochs 6

Learning rate 0.01
Dropout rate 20%
Input shape 128x64 pixels

C. Reinforcement Learning

For the Optimal part of the system, a RL approach is
used. Namely, two different agents have been developed. The
first one, based on the Q-learning architecture, works as a
“Supervisor.” It handles the optimization of the parameters of
a deterministic conflict resolution algorithm. The reasoning
behind this is that Q-Learning is a simple framework for
RL, using a well-performing deterministic algorithm with this
RL agent as a supervisor to improve performance provides a
good middle ground between full RL and full deterministic
control. The second agent is based on Deep Q-Learning from
Demonstrations (DQfD). This agent was selected because, in
preliminary research, it was shown to work well in this envi-
ronment [14] and with the SSD as input. Another advantage of
DQfD is that it can make use of a pre-training phase, where it
is exposed and trains on “expert demonstrations.” This allows
the agent to learn a good initial policy for the training, thus
speeding up training and requiring less interaction with the
environment itself before converging to a good policy.

As with the SL system, the DQfD agent also receives the
SSD as input. Likewise, it also outputs a solution advisory in
the form of a heading change. A description of DQfD can be
found in [14]. The high-level idea of its use in this research is
to use it in conjunction with demonstrations from a determinis-
tic conflict resolution algorithm to pre-train it without need for
much direct interaction with the ATM simulator. This makes



TABLE III
PARAMETERS OF THE SL MODEL

Parameters Value
Optimization Algorithm Adam
Learning rate (α) 0.00001
Batch size (n) 128
ϵ 1.0 to 0.05 (decaying)
Loss-function L(Q) = LDQN (Q)+λ1L(n−step)(Q)+

λ2LE(Q) + λ3LL2(Q)
Input size 128 X 64 X 1 (after pre-processing of SSD)
Output 6 possible heading actions

generating data easier. For a full description of Q-learning, the
reader is referred to [15]. Both Q-learning and DQfD are tried
and tested methods as well as being efficient and successful.
The RL model relies on a set of 10 layers. The architecture of
the network is a Dueling-DQN network. This architecture is
capable of achieving a better performance than a regular DQN
network in most tasks as shown in [16]. For this research, a
dueling network with two heads, one that estimates the state
value and one that estimates the action advantage, is used.
These two heads share the same feature learning module. This
feature learning module is made up of the CNNs as described
originally in [17]. The composition of the value and advantage
streams are the same and correspond to a fully-connected
layer with 512 neurons. Due to the different pre-processing
operations performed on the image, the overall output of the
feature learning module has a size of 3072. This is, thus, the
size of input of both streams.

As with the SL model, a hyper-parameter tuning process is
followed. The results of which are described in table III

D. Hybrid Automation

Within this research, a hybrid automation agent is also
considered. This agent takes information from both the optimal
and conformal models and creates, according to a given set
of parameters, a “middle-ground” between conformance and
optimality. The rationale behind this system is that while
conformance is desirable to increase acceptance, it is also
desirable to have a higher level of optimality. Having a piece
of automation that can make better decisions than the human
operator, but still remain strategically conformal, would, in our
view, be the best possible approach.

E. Limitations of using an SSD input

There are limitations to using an SSD as input to a ML
agent. Namely, the SSD is limited in the information it is
able to display. This is readily apparent when one looks at the
original design of the SSD. It lacked information on the target
heading and the time to loss of separation. Additionally, it is
only useful for heading and/or speed solutions, thus excluding
altitude. These limitations can be somewhat mitigated through
a careful re-design. The target heading can be added in a
pre-processing stage to the SSD as another colored line. The
different parts of the SSD conflict zones can be given different
colors that allow the agent to detect different times to loss-of-
separation. Including altitude information is, however, more

Figure 4. Conceptual diagram of the different components and their
interactions.

difficult to embed in the 2D velocity obstacle representation
and may require other design considerations to be explored in
future research.

One other limitation of the SSD is that the it is only a “1-
step-ahead” interface, i.e. it only displays the action that avoids
the conflict and does not consider what and when the correct
action should be to “steer-back” to the target heading. This
can, again, be somewhat mitigated through several methods
such as giving the RL agent penalties for a longer flight path,
thus implicitly rewarding it for finding better ways to perform
the avoidance and steer-back actions. It is, nonetheless, a
limitation of the interface itself. Future research will look at
using the s-called Travel Space Representation (TSR) [18] as
a visual input as it is a sort of “integrated SSD” and includes
both the avoidance action as well as the “steer-back” action. It
does this, specifically, by presenting the solution to the conflict
while already considering a ”steer-back” command for the
aircraft to resume its normal flight after the conflict is solved.

III. SYSTEM SETUP FOR VALIDATIONS

The envisioned interaction between the different types of
automation, the ATM simulator, and the human operator
(ATCo) can be seen in Figure 4. Validation experiments are
yet to be conducted under the umbrella of the MAHALO
SESAR exploratory research project. The “switches” presented
in the figure above will be static as part of the experimental
design as opposed to real-time shifts. For each Human-in-the-
Loop (HITL) experiment, the positions of these switches needs
to carefully calibrated. The “transparency” switch controls
exactly how much of an explanation (if any) is given to
the operator (e.g., by showing/hiding parts of the SSD). The
“conformance” switch influences how individually-sensitive
the output of the system will be.

A. Data Generation

Data will be generated based on the conditions described
above. The BlueSky ATM simulator [19] is used to generate
data and train the RL agent as it is capable of generating
large numbers of automated conflict resolution example us-
ing Modified Voltage Potential (MVP). The ATM simulator



Figure 5. State of the art PVD implemented in SectorX

SectorX (see Figure 5) , a Java-based medium fidelity ATC
simulator for HITL research, is used to generate data for the
SL agent through a simplified heading solver implemented
in the code. The reason for using two different simulators is
that BlueSky is implemented in Python. Since the RL agent
requires interaction with the system in order to learn better, it
is helpful to have a simulator that is implemented in Python
as this is the de-facto ML programming language.

B. System Interactions

Since two different simulators are used, several software
interfaces need to be developed to translate scenarios from
BlueSky to SectorX and vice versa. Whenever a solution from
the RL agent is required in the experiment, for example, the
scenario is converted into BlueSky, the RL agent’s advisory is
calculated and is converted back into SectorX. While these
interfaces are important for the proper functioning of the
overall system, they will not be described in depth as they
are only background applications.

IV. EXPERIMENTS

A. Overview

In order to validate the assumptions made and the ML
agents created, experiments will be performed in the future.
These experiments are carefully designed in order to effec-
tively study the effects of conformance and explainability.
Namely, three experiments are to be conducted during this
research.

Simulation 1 will take place at TU Delft and will serve
to validate and test the implementation of the techniques
described. This experiment will involve novices (university
students) in generating data and testing the interfaces and data
collection protocols.

Simulations 2a and 2b will be performed in Italy and
Sweden, respectively, with professional ATCos as partici-
pants. These experiments are each split into two stages: a
Conformance Pre-test and a Final experiment. During the
Conformance Pre-test, data will be collected on the way
ATCOs solve conflicts such that the conformal automation
can be properly trained. The Final experiment will happen
some weeks after the Conformance Pre-test and will involve
exposing ATCOs to conformal advisories (trained from the
pre-test data) and optimal advisories (from the RL model) in
a supervisory control setting. During these experiments several
hypotheses will be tested:

• Controller self-reported acceptance of advisories is higher
for solutions that conform to the controller’s chosen
solution. Likewise, it will be higher in the presence of
a high transparency display format.

• Assuming that they differ, conformal solutions are ex-
pected to provide a higher level of acceptance/agreement
than optimized solutions.

• Optimal solutions will be associated with lower reported
trust than will conformal solutions.

• Increases in either conformance and/or transparency will
be associated with a decreased controller reported work-
load and acceptance.

Two independent variables will be studied: Transparency
and Conformance. Conformance will be provided in three
levels: Personalized prediction model, Group prediction model
and Non-conformal model.

Likewise, Transparency will be provided in three levels:
No Transparency, Domain Transparency (Highlighting of the
relevant part of the solution space) and Agent Transparency
(agent provides a text-based explanation for choosing one
solution over another, for example, by explaining that solution
A leads to a lower flight path deviation than solution B).
Since all solutions can be generated before the experiments
are actually ran, developing ML models capable of generating
advisories in real-time is not a concern for this research. This
removes some constraints for choosing the agents, but also for
performing the experiment since there is not a specific need
for high-end hardware.

B. Expected Results

The main results obtained thus far relate to the development
of the different ML agents, their interfaces and the presentation
within Sector X. The ML agents have been tested for their
reliability and accuracy. As explained above, run time is
not a concern for this research. Previous research as well
as preliminary results gathered throughout the development
of these systems demonstrate that the approach chosen is
adequate. The main results will be obtained after the Main
experiment when trust and acceptance will be measured and
the hypotheses can be tested.

V. DISCUSSION

While the progress seen in this research is promising, we
acknowledge several limitations. These limitations have to do



with the traffic scenarios being considered, the actions the
agents were allowed to take and the input given to the ML
agents.

As stated above, the traffic scenarios considered were lim-
ited. Future research should look into more complex forms
of traffic involving en-route as well as terminal traffic and
weather effects. The limited set of allowed actions (only
horizontal resolutions in terms of heading and/or speed) also
contributes to a reduced level of realism. For a better idea of
the effect a system like this would have on real air traffic
control, the set of actions the automation can take has to
be expanded. In a first step, automation could be allowed to
also issue altitude commands (which are the most common
resolution commands in en-route airspace). These limitations
were mainly due to a need to reduce traffic complexity to test
the effects of conformance and explainability alone.

The input given to the ML agents was chosen to be the SSD
as it is a simple, yet effective, interface that has been proven
to work well as a decision-support tool. Ideally, an interface
that provides the ML agent with more information would be
ideal. One of the main limitations of the SSD is that it does not
include information on steering back to the target waypoint.
Another limitation is that it only displays information on the
horizontal domain. This research thus provides a first step in
showing how to possibly achieve conformal and optimal AI
using on a visual, human-interpretable state representation as
inputs to ML models. Nevertheless, it is essential that either
the SSD is adapted to contain more information or that another
interface is used if this approach is to be followed in the
future.

VI. CONCLUSIONS

This article presented an overview of the current approach
being taken by the MAHALO team to develop an Artificial
Intelligence agent that is also capable of communicating with a
human ATCO using a visual representation of the traffic state,
called the Solution Space Diagram. The main focus of this
research is to explore how conformal and optimal AI models
can be made transparent in order to foster acceptance of
such models. Throughout both a literature review and several
workshops, it has been seen that AI, and in particular ML, is
a topic that is currently generating much interest in the ATC
community.

While it is too early to provide conclusions about our sug-
gested approach, the current stage of research offers optimistic
results in terms technical feasibility. The next steps in the
development will be the upcoming experiments, where the im-
pact of manipulating levels of transparency and conformance
on operator acceptance and human-automation interaction will
be explored.
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