

Analysis & report,
integration

 Deliverable ID: D5.1

 Dissemination Level: PU

 Project Acronym: MAHALO

 Grant: 892970
 Call: H2020-SESAR-2019-2
 Topic: SESAR-ER4-01-2019
 Consortium Coordinator: DBL
 Edition date: 30 November 2021
 Edition: 00.01.00
 Template Edition: 02.00.02

EXPLORATORY RESEARCH

ANALYSIS & REPORT, INTEGRATION

 2

Authoring & Approval

Authors of the document

Name/Beneficiary Position/Title Date

Erik-Jan van Kampen/TUD WP5 Leader 10/11/2021

Tiago Monteiro Nunes/TUD WP5 Researcher 15/11/2021

Magnus Bång/LIU WP5 Researcher 17/11/2021

Sami Yahia/LIU WP5 Researcher 22/11/2021

Reviewers internal to the project

Name/Beneficiary Position/Title Date

Carl Westin (LiU) WP6 Leader 22/11/2021

Brian Hilburn (CHPR) WP2 Leader 22/11/2021

Clark Borst (TUD) WP4 Leader 23/11/2021

Martin Christiansson (LFV) Project member 24/11/2021

Matteo Cocchioni (DBL) Project Contributor 26/11/2021

Stefano Bonelli (DBL) Project Coordinator 26/11/2021

Approved for submission to the SJU By - Representatives of beneficiaries involved in the project

Name/Beneficiary Position/Title Date

Stefano Bonelli (DBL) Project Coordinator 26/11/2021

Rejected By - Representatives of beneficiaries involved in the project

Name/Beneficiary Position/Title Date

ANALYSIS & REPORT, INTEGRATION

 3

Document History

Edition Date Status Author Justification

00.00.01 10/11/2021 Draft Erik-Jan van Kampen Doc created

00.00.02 12/11/2021 Draft and internal
review

Erik-Jan van Kampen Deliverable improvement

00.00.03 15/11/2021 Draft and internal
review

Tiago Monteiro Nunes Deliverable improvement

00.00.04 17/11/2021 Draft and internal
review

Magnus Bång Deliverable improvement

00.00.05 22/11/2021 Draft and internal
review

Sami Yahia Deliverable improvement

00.00.06 26/11/2021 Internal release Matteo Cocchioni Deliverable to MAHALO
management

00.01.00 26/11/2021 Final Release Stefano Bonelli Deliverable approved for
submission

Copyright Statement

© – 2021 – MAHALO Consortium. All rights reserved. Licensed to the SESAR Joint Undertaking under
conditions.

ANALYSIS & REPORT, INTEGRATION

 4

MAHALO
MODERN ATM VIA HUMAN / AUTOMATION LEARNING OPTIMISATION

This deliverable is part of a project that has received funding from the SESAR Joint Undertaking under
grant agreement No 892970 under European Union’s Horizon 2020 research and innovation
programme.

Abstract

This document describes the efforts performed on the integration of Machine Learning models from
MAHALO WP3 with the Human Machine Interfaces from MAHALO WP4, as part of MAHALO WP5. A
framework is presented that is used to test the integration of the components, which contains a
number of interfaces where information is transferred between ATC simulators, displays and machine
learning models. First the overall pipeline of this integration testing framework is presented. After that
the interface and data formats are presented.

ANALYSIS & REPORT, INTEGRATION

 5

Table of Contents

Abstract ... 4

1 Introduction ... 7

1.1 Placement of WP5: Integration within MAHALO ... 7

1.2 Objective ... 8

1.3 Scope .. 8

1.4 Report structure .. 8

2 Integration procedure: Machine Learning models and Ecological User Interface 9

3 Interface descriptions ... 13

3.1 Scenario descriptions ... 13
3.1.1 Information stored in a scenario ... 13
3.1.2 Format of scenario file SectorX ... 14
3.1.3 Format of scenario file Bluesky ... 15
3.1.4 Conversion of scenario files from SectorX to Bluesky ... 16

3.2 States and Events .. 18
3.2.1 SectorX State-logs ... 18
3.2.2 SectorX Event-logs ... 20

3.3 Machine Learning model description .. 22
3.3.1 Conformal SL model .. 22
3.3.2 Optimal RL model .. 24

3.3.2.1 Inputs .. 24
3.3.2.2 Outputs ... 24

4 Conclusions and Recommendations .. 25

5 References ... 26

List of Tables
Table 1: Pipeline description for the integration test frameworks from Figure 3 and Figure 4 11

Table 2: SectorX scenario file format .. 14

Table 3 Description of .scn file commands.. 15

Table 4: SectorX State-log definition (example values correspond to Figure 8) 19

ANALYSIS & REPORT, INTEGRATION

 6

List of Figures
Figure 1: MAHALO Work Packages .. 7

Figure 2: Placement of WP5 .. 7

Figure 3: Optimized ML model flowchart SIM 1.. 10

Figure 4: Conformal ML model flowchart SIM 1 ... 10

Figure 5: Traffic as expressed in a scenario file and displayed in SectorX…………………………………………..12

Figure 6: Example of a BlueSky scenario file ... 154

Figure 7: Example of SectorX scenario file, part 1 ... 176

Figure 8: Example of SectorX scenario file, part 2 (continued from part 1).. 187

Figure 9: Example of a SectorX State-log .. 198

Figure 10: SectorX Event-log example ... 20

Figure 11: SectorX Event type information ... 221

Figure 12: SSD image as input to the SL model…………………………………………………………………………….……22

file:///C:/work/Projects/Mahalo/WP5/Deliverable%205.1.docx%23_Toc88828653
file:///C:/work/Projects/Mahalo/WP5/Deliverable%205.1.docx%23_Toc88828661

ANALYSIS & REPORT, INTEGRATION

 7

1 Introduction

1.1 Placement of WP5: Integration within MAHALO

MAHALO asks a simple but profound question: in the emerging age of Machine Learning (ML), should
we be developing automation that matches human behaviour (i.e., conformal), or automation that is
understandable to the human (i.e., transparent)? Further, what trade-offs exist, in terms of controller
trust, acceptance, and performance?

To answer these questions, two types of machine learning models have been developed in WP3 [1]: a
conformal/personalized prediction model based on
Supervised Learning (SL) and an optimized prediction model
based on Reinforcement Learning (RL).

Figure 1 gives an overview of the MAHALO work packages and
how they are connected. In WP4 [2] an Ecological User
Interface (E-UI) has been developed that can present the
operator with ATC conflicts and that can process input from
the operator that is aimed to resolve the conflict. The E-UI has
two main purposes. Firstly the E-UI is used for data collection,
where ATCO resolutions are logged for specific conflict
scenarios. The second purpose of the E-UI is to present the
ATCO with the advisories coming from the Machine Learning
models and to get feedback from the ATCO about the level of
agreement with the proposed resolution. The E-UI also has to
be able to present different levels of transparency when providing
the advisory from the Machine Learning model.

Figure 2: Placement of WP5

Figure 1: MAHALO Work
Packages

ANALYSIS & REPORT, INTEGRATION

 8

Figure 2 shows how the Machine Learning models from WP3 and the E-UI from WP4 interact within
the whole MAHALO framework. From this figure, the placement of WP5 also becomes clear. WP5 will
integrate the ML models and the E-UI, which were initially developed independently.

Since WP5 is about integration, it mostly contains technical tasks, such as defining interfaces and data
formats. It is a crucial prerequisite for having the main MAHALO experiments with ATCOs in WP 6.

1.2 Objective

The objective of WP5 is to test the integrated capabilities of the ML+E-UI combination, such that the
complete system will be ready for the experiments with real ATCO’s, which will take place in WP6. The
objective of this report is to describe the Integration process and outcomes. It also serves as a
reference for data formats and interface designs between the different components in the system.

1.3 Scope

WP5 covers the integration of the ML models and E-UI, which will be demonstrated in an experiment,
SIM1. It should be noted that SIM 1 is not meant to draw conclusions about the effect of ML on ATCO
performance or acceptance, which will be evaluated in the main experiments SIM2a and SIM2b in
WP6. Because the goal of SIM 1 is only to test integration and interfaces, it is not necessary for SIM 1
to be conducted by real air traffic controllers. The outcomes of SIM 1 will be able to show that the
integrated system is ready to be used by real air traffic controllers. The ML models generated in SIM 1
are not expected to be of high quality because of the limited number of samples used for training and
the quality of those samples, i.e. data generated by non-experts is possibly inconsistent, which is
detrimental for ML training. SIM1 itself is documented in MAHALO deliverable D5.2.

1.4 Report structure

Chapter 2 of this document contains the main overview of the WP5 integration procedures. It describes
the integration pipeline and identifies where interfaces need to be defined, which will be discussed in
Chapter 3. Besides the interface definitions, Chapter 3 also contains definitions of the main information
types/data that is stored and transferred in the integrated system.

Chapter 4 presents the main conclusions and outcomes of the integration process in WP5, with a
summary of achieved results and lessons learned.

ANALYSIS & REPORT, INTEGRATION

 9

2 Integration procedure: Machine Learning
models and Ecological User Interface

In order to integrate the ML models and the E-UI, several interfaces have been identified where
software from different parts of the system needs to communicate with other parts of the software or
hardware. Figure 3 and Figure 4 show flowcharts of intended operation of the Optimized and
Conformal ML models. The flowcharts are split into several steps, indicated by the blue dotted borders.
The steps are described in more detail in The other components in Figure 3 and Figure 4 are data
inputs/outputs and converters that convert data files from one format to another.

Table 1.

The main items in these flowcharts are:

 Bluesky1 An ATC simulator that is used to run faster-than-real-time simulations

 SectorX The ATC simulator that is used for the human-machine interaction.

 RL Model The optimized ML model based on Reinforcement Learning

 CNN/SL Model The conformal ML model based on Supervised Learning

1 http://homepage.tudelft.nl/7p97s/bluesky/

http://homepage.tudelft.nl/7p97s/bluesky/

ANALYSIS & REPORT, INTEGRATION

 10

Figure 3: Optimized ML model flowchart SIM 1

Figure 4: Conformal ML model flowchart SIM 1

ANALYSIS & REPORT, INTEGRATION

 11

The other components in Figure 3 and Figure 4 are data inputs/outputs and converters that convert
data files from one format to another.

Table 1: Pipeline description for the integration test frameworks from Figure 3 and Figure 4

Step Description

1 The Bluesky ATC simulator is used to train the RL agent. The RL agent interacts with the
Bluesky simulator in many (>40k) automatically generated scenarios with different
geometries and learns what is the best strategy for a given scenario description.

2 The SectorX ATC simulator is used to generate a small number of hand-crafted scenarios
that will be presented to the human air traffic controller together with the resolution
provided with the RL agent.

3 The hand-crafted SectorX scenarios are converted to Bluesky scenarios using an
automated script (see Section 3.1.4). These scenarios are then presented to the trained
RL agent. This trained RL agent then provides resolutions/advisories, which are stored.

4 The stored resolutions/advisories are converted into SectorX event-logs. These event-
logs can used, together with the original SectorX scenarios from step 2, to playback the
scenario in SectorX and to present the resolutions/advisories that were generated by the
RL agent to the human air traffic controller. Several options for providing transparency
of the generated resolutions/advisories will be provided.

The human air traffic controller can evaluate the proposed resolutions/advisories and
accept or reject them. Also feedback can be given on the reason of acceptance/rejection.

5 The SectorX ATC simulator is used to generate training scenarios that will be presented
to the human air traffic controller.

6 The SectorX ATC simulator is used to generate training data for the SL model by having
human air traffic controllers solve the conflict scenarios generated in step 5. The State
and Event logs of these simulations are stored.

The State and Event logs are used to generate training input for the SL model, which
consists of a picture of the Solution-Space-Diagram (SSD), which can be reconstructed
form the State-log, and the action that was taken by the human air traffic controller to
solve the conflict, which can be extracted from the Event-log. The SL model is then
trained with the SSD and action data.

7 The SectorX ATC simulator is used to generate a small number of hand-crafted scenarios
that will be presented to the human air traffic controller together with the resolution
provided with the SL agent. These scenarios are then presented to the trained SL agent.
This trained SL agent then provides resolutions/advisories, which are stored.

ANALYSIS & REPORT, INTEGRATION

 12

8 The stored resolutions/advisories are converted into SectorX event-logs. These event-
logs can used, together with the original SectorX scenarios from step 7, to playback the
scenario in SectorX and to present the resolutions/advisories that were generated by the
SL agent to the human air traffic controller. Several options for providing transparency
of the generated resolutions/advisories will be provided.

The human air traffic controller can evaluate the proposed resolutions/advisories and
accept or reject them. Also feedback can be given on the reason of acceptance/rejection.

The main effort in WP5 has been to set up this pipeline for testing of the integrated system. During
testing, interfaces were identified that had to convert or transfer data from one component to the
next, sometimes across different pieces of software and hardware. With different partners from the
MAHALO project working on the integrated system, it was especially important to have clear interface
definitions, since data sometimes had to be transferred between partners from different countries,
with different programming styles and customs. The following chapter describes these interfaces.

ANALYSIS & REPORT, INTEGRATION

 13

3 Interface descriptions

This chapter will describe the interfaces in the integrated system, where the machine learning models
are presented in conjunction with the rest of the contextual information. First the Scenario description
and interfaces will be presented in Section 3.1. The State and Event logs format will be presented in
Section 3.2. Finally, the machine learning model interfaces will be presented in Section 3.3.

3.1 Scenario descriptions

The abstract concept of a scenario, in which a number of aircraft are situated in a sector, with certain
position, velocity, heading information, has to be formalised and the format for storing scenarios must
be defined.

3.1.1 Information stored in a scenario

 A scenario file contains the basic information that is needed to initialize a simulation. It has
information on the sector layout, waypoints, airports, routes, aircraft, and weather. In SectorX, and in
our experiment, the airspace is 2-dimensional (x- and y-axis) with the origin being in the middle of the
screen. Sectors can be as large as possible and any shape by defining end connecting end points. To
run a scenario, a scenario file places the starting point of every aircraft with the angle at which the
aircrafts are facing towards. A waypoint is specified with each aircraft that shows where the aircraft
will leave the sector.

ANALYSIS & REPORT, INTEGRATION

 14

Figure 5: Traffic as expressed in a scenario file and displayed in SectorX

The specific format of a scenario file allows us to manipulate different aspects using scripts or manually
to create different types of traffic scenarios. In these scenarios, some variables can be kept constant
while others vary. Another feature worth mentioning is the automation feature on each aircraft. If this
feature is enabled (Boolean variable set true) it allows specific aircraft to use a pre-built automation
algorithm for detecting and avoiding conflicts with other aircraft.

3.1.2 Format of scenario file SectorX

Scenario files in the SectorX simulation environment are stored as XML files. Data format details for a
SectorX scenario file can been found in Table 2. An example of a SectorX scenario file can be seen in
Figure 5. An example of the specific scenarios used in SIM1 will be presented in deliverable D5.2 [3].

Table 2: SectorX scenario file format

Field items attributes example notes

root=scenario rotation 0.0 degrees

airspace sectors sector points Sector layout

 airports -

 waypoints waypoint info

 routes -

traffic aircraft id FET27 callsign

 icao A321 aircraft type

 x 0.17126441

x-position in NM w.r.t. center of
sector

 y -17.547169

y-position in NM w.r.t. center of
sector

 heading 359.8956 degrees

 ias 250.0 indicated airspeed in knots

 altitude 29000.0 altitude in feet

 departure

 destination

 copx AKON target sector exit

 target_altitude 29000.0 traget altitude in feet

 exit_altitude_ft 29000.0 required altitude at sector exit in feet

ANALYSIS & REPORT, INTEGRATION

 15

 automated false boolean state for automation

 flightState assumed

weather windfield id actual

 type empty

3.1.3 Format of scenario file Bluesky

An example of a typical BlueSky scenario file can be seen below. This file follows a .scn format that can
be readily edited through a notepad editor.

Figure 6: Example of a BlueSky scenario file

The repeating “00:00:00.00” string refers to the time at which each of these commands is to be carried
out by BlueSky (in this case at simtime = 00:00:00.00, the start of the simulation). The main commands
displayed above are summarized and explained in Table 3.

Table 3 Description of .scn file commands

 Command in .scn Functionality Format

CRE Creates an aircraft (ACID) in the
simulation environment

CRE, ACID, TYPE, LAT, LONG, HDG,
ALT, SPD

CRECONFS Creates an aircraft (id) in conflict
with the target aircraft (targeted)

CRECONFS, ID, TYPE, TARGETID,
DPSI, CPA, TLOS_HOR, dH,
TLOS_VER, SPD

ASAS Switches Airborne Separation
Assurance On/Off

ASAS ON/OFF

ANALYSIS & REPORT, INTEGRATION

 16

LNAV Used to switch Lateral Navigation
On/Off for a given aircraft

LNAV, ACID, SWITCH

RESO Sets a resolution method (OFF,
MVP, EBY, SWARM)

RESO MVP/OFF (the other
methods are not used in this
research)

RMETHH Sets horizontal resolution using
speed (SPD) or heading (HDG)

RMETHH BOTH/SPD/HDG/NONE

RESOOFF Switches off conflict resolution
module for given aircraft (Used to
disable intruding aircraft CR)

RESOOF ACID

TRAIL Used to switch on/off visual trails
of the aircraft

TRAIL OFF/ON

FF Fast forward the simulation to
conduct it faster than real time

FF

Let us now analyse the above example for the .scn file. The .scn file in question is initializing two A320s.
The first one (controlled a/c) is initialized through an absolute latitude and longitude, the second one
(intruding a/c) is initialized such that there will be a conflict with a conflict angle of 175 degrees and a
𝑑𝑐𝑝𝑎 of 0nms with a time to loss of separation of 300seconds. ASAS is then turned on, the resolution

method is selected as MVP (with only horizontal, heading resolutions) and the resolutions for aircraft
2 are turned off so that only the controlled a/c carries out resolution commands. The trails are then
turned on for better visual inspection and the simulation is fast-forwarded.

3.1.4 Conversion of scenario files from SectorX to Bluesky

The conversion of scenario files from SectorX to BlueSky is performed by a python script. This script
extracts all necessary information from the SectorX log and outputs it into BlueSky form. There are
some pieces of information that are contained in the SectorX logs that are not put into the .scn file for
BlueSky. These have to do with the sector layout itself. The .scn file from BlueSky does not directly
handle sector definition, it is mostly focused on initializing the aircraft, collision avoidance and plugins
(which are used to add further functionality to BlueSky). This means that, while this information is
contained in the SectorX scenario file, it is not directly extracted and is instead manually added to the
BlueSky files corresponding to sector definition. This is not a problem since the scenarios tend to differ
in their traffic and choice of controlled aircraft but not in their geography or location. For the purposes
of MAHALO the sector layouts and locations were kept constant to control for sector variation having
an effect on the measurements. This means that the sector information only needed to be manually
added once. Therefore, the scenario converter can automatically grab all information about the
aircraft and place them into a scenario file, knowing that the sector is already correctly defined.

Since the SectorX scenario files are in .xml format, the library xml.etree.ElementTree is used to parse
these .xml files and get the information required. By default the converter will analyse and convert
every file that is in the same folder as it is and corresponds to the proper SectorX format into the

ANALYSIS & REPORT, INTEGRATION

 17

BlueSky .scn format. This is done so that scenarios can be quickly converted in batches by simply
putting them in the same folder as the scenario converter and running it once.

Comparing Figure 6 with Figures 7 and 8 one can see that the aircraft information can be readily
transferred from one type of scenario file to the other. With one exception, the positions in SectorX
are defined in a local XYZ reference frame whereas BlueSky uses latitude/longitude/altitude. A
conversion is used to convert these XYZ coordinates into approximate Lat/Long coordinates. The
conversion used is:

1 min 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = 1𝑛𝑚; 1 min 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 = cos(𝑙𝑎𝑡) 𝑛𝑚

This conversion does carry some error but at the distances considered this error was deemed to not
be overly significant. One should note that this conversion becomes worse the closer to the poles the
sector is considered. Other more accurate conversions can also be used if a higher level of detail is
desirable. For the purposes of MAHALO this was deemed acceptable.

Figure 7: Example of SectorX scenario file, part 1

ANALYSIS & REPORT, INTEGRATION

 18

Figure 8: Example of SectorX scenario file, part 2 (continued from part 1)

3.2 States and Events

For the conformal ML model shown in Figure 4 state and event information, generated in the SectorX
during the prequel Human-in-the-loop tests, has to be processed such that it can be used for training
of the SL model. All information from the ATC simulation and the human interaction with it is stored
in two types of files: SectorX State-logs and SectorX Event-logs

3.2.1 SectorX State-logs

In SectorX, the State-logs are used to capture the state of the whole ATC simulation. At fixed rate in
the simulation, a snapshot is taken from the current state of the simulation. This information is stored
in an XML file with a fixed structure. An example of a SectorX state-log file can be seen in Figure 9.
Most information in the state-log is related to the states of the aircraft in the simulation, but there is
also information on the simulation timestamp and the scenario timestamp. Table 4 shows the SectorX
state-log definition together with example values, corresponding to Figure 9.

ANALYSIS & REPORT, INTEGRATION

 19

Figure 9: Example of a SectorX State-log

Table 4: SectorX State-log definition (example values correspond to Figure)

Top-level variable
Subfield
variable

Example
value

Description

realTime 1.254209 Time since start of simulation in seconds

scenarioTime 5.016836 Time inside the simulation in seconds

performanceScore 100
Can be used to store a performance measure
(to be defined)

aircraft callsign FET27 callsign/ aircraft ID

 radarStatus active

indicates if aircraft is currently active on the
radar display

 type_name none aircraft type

 isSelected false

indicates if aircraft is currently selected on the
radar display

 isAutomated false

indicates whether aircraft is under automated
control

 caution false

indicates if there is a caution for the given
aircraft

ANALYSIS & REPORT, INTEGRATION

 20

 conflict false

indicates if there is a conflict for the given
aircraft

 controlled false indicates if aircraft is currently being controlled

 ownNavigation false indicates if aircraft is put under own navigation

 flightState assumed current state of the flight

 label_x 99.99983 position of aircraft label in x-direction

 label_y 0.18221338 position of aircraft label in y-direction

 x 0.17126441 x-position in NM

 y -17.547169 y-position in NM

 altitude 29000.0 feet

 heading 359.8956 heading angle in degrees

 track 359.8956

track angle in degrees (equal to heading angle if
no wind)

 bankAngle 0.0 bank angle in degrees

 acceleration 0.0 aircraft acceleration

 gs 387.1662 ground speed in knots (same as tas if no wind)

 tas 387.1662 true airspeed in knots

 ias 250.0 indicated airspeed in knots

 rocd 0 rate of climb/descent in feet/min

 mach 0.6540285 Mach number

 ias_min 200.0 minimum allowed indicated airspeed in knots

 ias_max 290.0 maximumallowed indicated airspeed in knots

 tas_min 313.3818 minimum allowed true airspeed in knots

 tas_max 444.45007 maximumallowed true airspeed in knots

 targetAltitude 29000.0 target altitude in feet

 targetHeading 359.8956 target heading in degrees

 targetIas 250.0 target inidcated airspeed in knots

3.2.2 SectorX Event-logs

SectorX Event-logs record any interaction that is made with the simulation, either by human operators,
or by the machine learning models. Human interaction with the simulator includes commands that are
given to aircraft, such as a requested heading or altitude change, but also includes all interactions that
are made through the human-machine-interface, such as mouse clicks, menu button clicks, etc. The
machine learning interaction is purely through provided resolutions, no other event types, such as
mouse clicks are performed by the machine learning models.

ANALYSIS & REPORT, INTEGRATION

 21

Figure 10 shows an example of a SectorX Event-log. Events have specific types, such as “messageEvent”
which means a message was shown on the display, or a “flightEvent,” which can be a command given
by automation or by the human operator to an aircraft that is controlled in the sector.

Figure 11 shows an explanation of what can be contained in a “flightEvent.” The specific subfields in
the Event-log are overlapping with some subfields in the State-log, so Table 4 can be used again to see
a description of these variables.

Figure 10: SectorX Event-log example

ANALYSIS & REPORT, INTEGRATION

 22

Figure 11: SectorX Event type information

With the Scenario definition, State and Event-logs definitions, and the conversions that have to be
made between the Bluesky and SectorX simulators in place, the remaining part of the interface is a
description of the machine learning models input and outputs. These inputs/outputs connect to State
and Event logs to form an integrated system. The following section will describe these ML interfaces
in detail.

3.3 Machine Learning model description

The main working principle of the ML models used in the MAHALO project can been found in
deliverable D3.1 Machine Leaning report [1]. In this section, the focus is on the interaction of the ML
models with the rest of the system, i.e. how data is pre-processed and fed to the ML model and how
is the output of the ML models used to provide the suggested resolution to the user.

3.3.1 Conformal SL model

The main task of the SL model is to act analogously to the ATCO. This entails seeing the same
information that the ATCO sees on the display of SectorX and generating conflict resolution actions
that reproduce the ATCO’s actions for similar conflicts. Technically, this can be done in several ways.
As mentioned, we employ the Solution Space Diagram (SSD) to observe the surroundings of the aircraft
the ATCO is focusing on. This is the input for the SL model in a macro sense, for both training and
practically, when using the agent. Figure 12 shows an example of an instance of a conflict and how the
SSD appears on SectorX from the ATCO’s view. For more details on the pipeline for the SL model and
how images are generated for training the model, see Chapter 3 in Deliverable 5.2 Simulation 1 report
[3].

ANALYSIS & REPORT, INTEGRATION

 23

Figure 12: SSD image as input to the SL model

The SSD images generated are of equal 130 pixel per inch size. The pixels are handled as a matrix (i.e.,
a NumPy array), pre-processed by resizing if necessary, normalized as values between 0 and 1, and
eventually labelled by matrix. The label represents the heading change that the ATCO made during an
instance to avoid the conflict between aircrafts. When trained using conflict resolutions from individual
ATCOs, this data allows the conformal SL agent to know and model, for every instance of the SSD,
specific air controller decisions-- for example, a decision on Aircraft 1 to make a 20 degrees turn west.

For efficient and smooth training, labels are pre-processed before training for simplification. Since the
heading changes could be any numerical (i.e., float) between 0 and 360, this could complicate
classification and more data would be needed for a higher confidence. The agent does not have to be
very specific with a heading suggestion having multiple decimal points. Hence, decisions are simplified
and categorized in 4 different states using SSD images with either +20, +10, -10 or -20 heading angle
changes. This is the approach being taken as of now and results in angle predictions by the model as a
list containing 4 values. These values sum to 1, and the one with the maximum value indicates the
model suggestion and heading change for the specific instance (SSD image). Subsequently, this result
can be used to further enhance the output from the agent. For example, since the SL model pipeline
already has the information of the specific aircraft and its corresponding SSD image, it would be
possible to display detailed information to the ATCO in SectorX. The pipeline as constructed now,
returns the ‘Callsign’ (aircraft) and ‘Scenario Time’ in addition to the ‘Heading change’ as results from
the SL agent.

To reiterate, the agent being compiled using TensorFlow in Python takes an array of pixels,
preprocesses it, and assigns a label (representing the decision). A more detailed technical description
of the supervised learning topology used for the SL model can be found in MAHALO deliverable D3.1.

ANALYSIS & REPORT, INTEGRATION

 24

3.3.2 Optimal RL model

The RL agents require only information on the states of the different aircraft in the sector, as their goal
is not to be conformal to the operator. For the two different RL agents, the Q-learning and DQfD
agents, the inputs and outputs differ.

3.3.2.1 Inputs

When it comes to the Q-learning agent, since it only acts as a “supervisor” to manage and oversee the
performance of the MVP algorithm, its inputs are relatively simple. The Q-learning agent does not have
direct control on the commands given to the aircraft and, instead, controls the parameters of the MVP
algorithm. Therefore, the inputs of the Q-learning agent are:

 Conflict geometry parameters: conflict angle, initial dcpa (distance to closest point of approach
at the start of the scenario) and initial time to loss of separation (tlos in seconds) of the two
aircraft

 Previous settings of the MVP algorithm: lookahead time and safety factor

These inputs are also the states of the Q-learning agent.

The DQfD agent directly provides a resolution, unlike the Q-learning model, which uses the MVP
algorithm as an intermediate. The DQfD agent then receives information on the current traffic state
through pixel information. This pixel information is codified in the aforementioned SSD. In order to
increase accuracy, DQfD is fed two SSDs corresponding to two successive states. This provides the
agent with more contextual information

3.3.2.2 Outputs

The Q-learning agent decides the parameters the MVP algorithm is to use. Therefore its outputs are
made up of the two parameters it is trained to optimize: lookahead time and safety factor. These are
outputted as numerical values.

The DQfD agent outputs a combined heading + speed solution to the controlled aircraft. This is given
as a numerical value as well. For better visualization it can then be converted back into an SSD (with
the command represented as an arrow), but this is only relevant for the interaction with the operator.

ANALYSIS & REPORT, INTEGRATION

 25

4 Conclusions and Recommendations

This chapter presents the main conclusions and outcomes of the integration process in WP5, with a
summary of achieved results and lessons learned.

An integration pipeline for combining the Human Machine Interface and the Machine Learning models
was successfully designed and implemented according to the diagrams in Figure 3 and Figure 4.
Verification of the scripts that allow a transformation of data from one simulator into the other has
been carried out by visual inspection of the generated simulation in both simulators and the results
were found to be good.

The real test to see if all integration steps have been performed correctly is performed in the SIM1
experiment. MAHALO Deliverable 5.2 [3] describes SIM1 and its outcomes in detail, so that will not be
repeated here, but it can be mentioned here that the pipeline is working as intended and data flows
correctly from human operators to the simulator, from simulators to the machine learning models and
also back to the human operators again.

A challenge in designing the integration process and in defining the interfaces was that not all steps
had been fully worked out yet. For example, there was still work being done on creating the right type
of scenario for the Main Experiment [5]. Depending on the design choice of the scenario, the scenario
interface had to be updated. Another example is in the type of resolutions that the ML models have to
provide. If the resolution is only in heading, then a “heading Command” Event-type suffices. If
however, the ML models also have to generate a speed or altitude command, then the Event-type
definition has to be updated.

Ideally all subcomponents should already be designed and frozen when the integration takes place,
but, on the other hand, the integration process itself sometimes identifies issues in the components
that have to be resolved, either by manipulating the interface, or by changing the internals of the
component. In the end this will also improve the complete integrated system.

A key lesson learned is that the interface design should be started early, such that missing functionality
in the components can be found early as well. Also all interface definitions should be continually
updated and shared between all members working on the components. This sounds very obvious, but
in practice it has occurred, also in this project, that component inputs/outputs were updated without
changing the interface definition, which can result in an incorrectly operating system.

A specific component output that was found to be missing during interface design is the way in which
the ML models will provide explanation about their provided resolution. The format of the output has
been defined, e.g. a 200 character string of text, but it became clear that what exactly we want to put
in that text was not designed yet. This identified problem was addressed in the MAHALO workshop
held on October 28, 2021, in which we asked the participants (among which experienced Air Traffic
Controllers) what kind of explanation they would like to receive form the ML models. The outcome of
this workshop is documented in MAHALO deliverable 7.2[4] and will be used for the design of the final
experiments in MAHALO WP6.

ANALYSIS & REPORT, INTEGRATION

 26

5 References

[1] MAHALO D3.1 Machine Learning report

[2] MAHALO D 4.1 E-UI design doc & demonstrator

[3] MAHALO D5.2 Simulation 1 report

[4] MAHALO D7.2 Workshop report

[5] MAHALO D6.1 Experimental design document

