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Abstract  

This document is the deliverable 2.1 that presents an integrated report on the output of the human 
performance and ML reviews, highlighting the latest theoretical and empirical work into each. The 
document integrates the outputs of two Tasks T2.1 and T2.2, respectively State of the Art review, 
human performance and State of the Art review, ML. 

Several topics are analysed, from a general overview of the main activities performed by a modern 
ATCO and the best Conflict Detection and Resolution strategies, to the importance of integrating 
Machine Learning in future normal operations and the pivotal role of MAHALO Project in exploring 
the real possibilities in realising and applying such a technology. Furthermore, other important 
questions about human performance are reviewed, in terms of conformance and transparency.  

The lesson learnt from this review that can be applied to the MAHALO project over the coming 
months is also summarised. 
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1. Introduction 

1.1 Context 

Looking beyond the current COVID pandemic, long term forecasts predict continued growth in 
global air traffic. To meet this demand, the air traffic control (ATC)1 system of the future will require 
greater application of more sophisticated automation, both in terms of system authority and 
autonomy, and in terms of control tasks. Generally speaking, ATC involves such tasks as: 
monitoring air traffic, detecting conflicts, making data entries, devising solutions, implementing 
solutions (by interacting with aircraft or other actors), revising plans and strategies, etc. 

Until now, automation has generally only been applied to the simpler, routine tasks among these 
[Claudatos et al, 2018], such as processing flight data, checking flight plans, etc. For roughly 70 
years, the so-called Fitt’s List has served as a guide to function allocation between human and 
machine, based on the relative strengths and weaknesses of each. For example, humans excel at 
tasks involving improvisation and inductive thought, whereas machines are superior at tasks 
requiring speed, power, and computational strength. In recent years, the Fitt’s List has fallen out 
of favor, as technological advances have begun blurring the line between the types of tasks that 
can be done by humans and machines. 

One of the main challenges faced by the ATC community in the coming years is how to best develop 
and deploy new forms of automation incorporating Artificial Intelligence (AI) [SESAR, 2019; 
EAAIHLG, 2020; EASA, 2020]. Recent advances in AI, in particular Machine Learning (ML), present 
both a considerable opportunity and an enormous challenge to meeting these demands. ML offers 
the possibility that future ATC systems will be able to sense, learn, and act autonomously, and will 
be increasingly able to take over much of the cognitive work involved in separating and expediting 
air traffic [Kistan et al, 2018]. ML methods are developing at an explosive rate, and are being 
deployed in new domains seemingly daily. However, the potential capabilities of ML must be 
weighed against some clear challenges. 

These challenges stem in part from the fact that ATC problems are often complex and ill-defined. 
ATC represents a large “solution space” in that air traffic control accommodates various successful 

                                                           

1 This report focuses on ATC, but will also refer to Air Traffic Management (ATM), which refer to 
the broader set of air- and ground-based functions (including ATC services, airspace management, 
and flow management). 
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strategies within the basic system constraints. As long as aircraft are kept separated, controllers 
can differ in their overall strategies and individual solution choices. 

Automation is something of a double-edged sword. It has often been said that automation excels 
in tasks that are ‘dirty, dumb, or dangerous.’ From manufacturing robotics, to hazardous material 
handling, to rail transport [Balfe et al, 2014], automation has provided clear benefits in terms of 
performance, safety, and efficiency. However, often-cited potential human performance costs 
include: transient workload peaks; situation awareness problems; return-to-manual control 
difficulties; and others [Manzey et al, 2012]. Increasingly, however, as the capabilities of 
automation approach those of the human, and machines can increasingly take over many of the 
‘thinking’ parts of jobs like ATC, we are forced to consider how issues of trust, acceptance, and 
reliance will be impacted [(c.f. section 5); Lee & See, 1992; Kistan et al, 2018; Mekdeki, 2015; 
EAAIHLG, 2020].  

 

1.2 Project scope and objectives 

MAHALO focuses on a particular application of advanced automation that seems likely to change 
the nature of the controller’s job in coming years: namely, conflict advisory (or decision support) 
automation, which provides the controller real-time assistance with conflict detection and 
resolution.  

Given that the future ATC system will likely rely on AI approaches for designing such advanced 
automation [e.g. EAAIHLG, 2020], the question emerges of how we should be developing systems 
like this. The basic research questions behind MAHALO can be stated as follows: 

In the emerging age of machine learning, should we be developing automation that matches the 
performance and strategies of the human, or should we be developing automation that is 
understandable to the human? Do we need both? Are there trade-offs and interactions between 
the two, in terms of air traffic controller trust, acceptance, or system performance? 

Notice that these research questions touch on two important concepts in human-machine system 
design. These concepts will be discussed in more detail in chapter 5: 

 Conformance—the MUFASA project introduced the term strategic conformance to 
describe the apparent match between human and machine strategies underlying conflict 
resolutions [MUFASA, 2013].  The project demonstrated that conformal automation could 
benefit acceptance and agreement, and therefore help foster trust in, and use of, 
automation; 

 Transparency—has been defined as “automation’s ability to afford understanding and 
predictions about its behavior” [Westin et al, 2016].  One of the biggest potential 
drawbacks of ML methods is that their output is often ‘opaque,’ unintuitive, and difficult 
to understand.  In a sense, ML can sometimes seem just a black box that learns how to 
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associate input and output. The human operator can then have a difficult time inferring 
and understanding the underlying process2 that the black box used. 

The concepts of transparency and conformance might trade off. For example, it is possible that 
transparency would be less essential if automation could foster acceptance and trust (and eventual 
automation use) by appearing to solve problems in a way that conforms to humans’ general 
strategies, or even to an individual's specific strategy. In that case, conformance could reduce the 
need for transparency. But what is the overall system performance benefit of highly conformal 
automation, that presumably just replicates the controller’s performance (whether it be ‘right’ or 
‘wrong.’)?  Eventually, we want automation to extend the capabilities of the human. Figure 1.1 
shows how the concepts of automation transparency and conformance can vary independently. 
This can lead, at the extremes, to one of four outcomes. MAHALO intends to explore, via human-
in-the-loop simulations, the optimal balance between transparency and conformance of an AI 
conflict detection and resolution (CD&R) support system.  

  TRANSPARENCY 
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● Different solution than 
individual 

● Solution not explained 

● Different solution than 
individual 
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● Same solution as individual 
● Solution not explained 

● Same solution as individual 
● Solution is explained 

Fig. 1. 1. Automation conformance and transparency can vary independently. 

In addressing the research questions around automation transparency and conformance, MAHALO 
is leveraging its collective team expertise in ML modelling, ATC operations and concepts, and 
display development, to conduct the activities described in the following paragraphs. 

Develop a hybrid ML capability for conflict detection and resolution 

                                                           

2 As discussed in chapter 5, transparency is a multifaceted construct that can refer to the 
understandability of different aspects, including the output product and the underlying process, 
of automation. 
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MAHALO set out to create an integrated system of two ML models, to separately address the 
processes of conflict detection and conflict resolution. As discussed in later chapters, this State-of-
the-Art Report (SOAR) aimed in part to help confirm the initial feasibility of this concept, and to 
identify candidate ML methods to achieve this. 

Develop a control model of ATC, and experimental User Interface 

As described later in chapter 2, ATC can be described a dynamic control task in which an agent 
detects system disturbances, and applies compensatory action so as to maintain system behavior. 
By describing ATC in terms of a generic feedback loop, the tasks can be assigned to either human 
or machine agent. This control model framework will also help us identify candidate control inputs 
(e.g. heading, speed) and monitored variables (e.g., distance between aircraft, groundspeed). 
Finally, this control model framework will help refine the experimental User Interface that will sit 
atop MAHALO’s hybrid ML system. 

Evaluate the impacts of automation transparency and conformance 

MAHALO extends the experimental methods of the earlier MUFASA project [9], which simulated 
advisory automation, and explored conformance, via unrecognizable replays of previous manual 
performance. MAHALO, again, aims to build a stable hybrid ML system for resolution advisories. 
This ML system will then form the testbed for experimental human-in-the-loop simulations 
exploring the interactive effects of automation transparency and conformance on human / 
machine system performance. A question is how to operationalize the conformance and 
transparency of a ML system. 

Develop an automation design framework 

Based on the output of this review, as well as the system / UI development, and human-in-the-
loop trials, MAHALO aims to produce a framework document to help guide the introduction of ML 
into ATC systems. This will include conclusions on ML approaches to CD&R, the roles of automation 
transparency and conformance, as well as the impact of contextual factors such as traffic load, 
complexity, and off-nominal conditions. 

 

1.3 Purpose and Scope of the State-of-the-Art-Report  

1.3.1 Task 2.1: Human performance review 

MAHALO task 2.1 reviewed recent theoretical and empirical contributions in the relevant areas of 
human performance, including:  

● Explainable AI (XAI), in particular ML interpretability; 

● Transparency; 
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● Automation strategic conformance;  

● User Interface principles for fostering trust, reliance, and transparency. 

Outputs from such previous SESAR Exploratory Research as MUFASA, C-SHARE, STRESS, and NINA 
were included, as well as ongoing ER and IR activities (e.g. TERRA and relevant RPAS CD&R 
research). An important element of task 2.1 was review and cataloguing of controller CD&R 
strategies. A preliminary list of these CD&R strategies (work is ongoing) is presented in section 3.3 
of this report.  

1.3.2 Task 2.2: ML methods review 

In parallel, task 2.2 reviewed recent research into AI and ML methods, including: 

● Recent architectures and models for ML; 

● Data requirements for ML; 

● Object detection and localization in ML modelling; 

● Integrating ML methods; and 

● Candidate ML architectures applicable to the ATC CD and CR processes. 

Although the MAHALO team brings broad hands-on experience with ML methods, and their 
application to CD&R applications, ML is an incredibly fast-moving field. Developments into new 
methods and theories are made nearly every day, it seems. We were therefore especially 
concerned about verifying the latest literature (recent five years) into ML methods to ensure we 
were taking onboard the latest thinking and techniques in the field. 

This effort consisted of parallel reviews into human performance (task 2.1) and ML (task 2.2), 
combined into a single integrated report. 

1.3.3 Assumptions and research questions 

The task 2.1 and 2.2 reviews were integrated into one State-of-the-Art-Report (SOAR), which 
integrates both the human performance- and ML reviews. The team went into the SOAR with some 
basic assumptions about the ConOps and methods we would use. However, we did not want to 
pre-judge any of our ultimate methodological decisions. Especially in the field of ML, it was 
important to ensure that we were taking onboard the latest knowledge from the R&D and 
operational communities. 

ASSUMPTIONS 

Some basic assumptions at the outset of the SOAR included the following: 
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● The controller works together with an AI system in CD&R; 

● We would focus on the executive controller in single person operations; 

● We would focus on the en-route domain; 

● We would use TU Delft’s Sector X platform for simulations; 

● We would focus on tactical control; 

● We would assume Controller-pilot communication via data-link; 

● We assume a future environment consisting of 4DTM, where the majority of separation 
conflicts have been solved strategically; 

● We would explore the feasibility of flight-centric ATC; 

● We would consider sector size and traffic levels to be considerably larger and higher than 
current levels;  

● We would integrate both screen (traffic) and eye tracking data as input measures; 

● We would manipulate conformance and transparency as independent variables; 

● We would split the CD and CR functions; 

● We would evaluate the system against measures of acceptance, trust, understanding, 
workload, and performance; and 

● We would use some sort of combined ‘hybrid’ ML architectures for each of these CD&R 
functions. 

MAHALO targets a future ATM environment in line with the digital European sky vision 2040 (i.e. 
phase D in the digital transformation) in the European ATM Master plan [SESAR, 2019]. Important 
characteristic of this vision includes dynamic airspace organization, flight-centric ATC, and free-
routes. Central to this vision is the increase in automation capabilities in supporting the human. 
Here MAHALO targets a high automation capability (level 4), where the controller receives 
automation support in all human information processes stages (sense and perception, analysis, 
decision-making, and action implementation).  

The vision also comprises expectations that AI support systems will substantially alleviate 
controllers’ workload, controllers will delegate tasks to AI systems, AI systems will propose the 
best options to humans (flow, sequences, safety net etc), and AI will solve complex trajectory 
situations using machine-to-machine communication with aircraft.  

More specifically, MAHALO assumes controller and automation to collaborate in CD&R, with the 
automation conducting conflict detection and either executing solutions or proposing solutions, to 
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the controller, to be accepted.  A simplified version of the ATM Levels of Automation (LOA) 
framework proposed in the ATM Master Plan is shown in Figure 1.4.  

 

Fig 1.4 ATM Levels of Automation (LOA) framework (after SESAR, 2019). 

RESEARCH QUESTIONS 

The integrated SOAR was intended to feed directly into a specification of the MAHALO ConOps, 
traffic scenarios, UI design, experimental / simulation design, data requirements, ML architecture, 
and metric selection.   

Specifically, the SOAR aimed to address eight high level research questions, that fall generally into 
one of these areas: 

ML issues: 

1. Broadly speaking, how should we model the CD&R process? 

2. Which candidate ML approaches seem most promising for modelling CD&R? 

3. What main challenges exist in the use of ML methods, and how can we counter these? 

Assessing human and system impacts: 

4. Do transparency and conformance constructs still seem critical, and how feasible are they to 
experimentally explore? 
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5. How can transparency be operationalised in simulation trials? 

6. How can conformance be operationlised in simulation trials? 

7. How do we assess other aspects of human performance, including trust, acceptance, and 
workload?  

Interface issues: 

8. How should we address display issues to convey transparency and conformance? 

 

1.4 Report Structure  

The report is divided into six chapters.  

The first chapter contains a background and introduction to the MAHALO project and this report. 

Chapter 2 introduces ATC and the core task of CD&R from a generic control perspective.  

Chapter 3 covers our literature review of CD&R approaches. Following a closer look at previous 
CD&R reviews and proposed CD&R taxonomies for ATM and UTM (i.e. relating to Task 2.1), a 
detailed literature review of ML approaches to CD&R was conducted.  

In Chapter 4 we provide an introduction to ML. Both general approaches and specific approaches 
to ATM are discussed. This chapter also discusses ML interpretability - the ML approach to 
transparency. Chapter 4 covers Task 2.2 as outlined above, except for candidate ML architectures 
for CD&R. These will be covered in the D2.2 Operational Concept Report. 

Chapter 5 takes a closer look at the human performance aspects relevant to MAHALO (Task 2.1). 
In particular, this chapter provides an information processing perspective on ATC functions, and 
examines MAHALO’s two core human performance constructs: automation conformance and 
automation transparency.  

The report closes with chapter 6, which sums up the lessons learnt from this review, that can be 
applied to the MAHALO project over the coming months. 
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2. ATC: control task definition 

This chapter focuses on describing the ATC task from a generic control perspective, irrespective of 
the type of agent (i.e., human or computer) who is performing the control task.  

 

2.1 ATC as a feedback control system 

Air Traffic Control (ATC) is a subset of Air Traffic Management (ATM) and is located at the sharp 
end of ATM operations, namely tactical control when aircraft are airborne. Here, the primary 
purpose of ATC is to safely and efficiently organize and expedite the flow of air traffic from origin 
to destination, and provide information and other support for pilots. 

ATC can be regarded as a dynamic control task where human and/or computerized agents need to 
close a feedback control loop, as illustrated in Figure 2.1. In such a control architecture, the agent 
observes the outputs of a system and evaluates those against certain goals and targets (e.g., Key 
Performance Indicators expressed in terms of safety and efficiency measures). Whenever system 
outputs deviate from the goals, it is the agent’s responsibility to provide inputs to the system such 
that the goals will be met. In dynamic control tasks, system outputs will continuously be affected 
by disturbances, which will require the agent to continuously monitor and steer the system so as 
to mitigate the impact of disturbances on the system’s outputs. In order for any system to be 
controlled successfully, important prerequisites are ‘controllability’ and ‘observability’. This simply 
means that all critical system states must be able to be observed by the agent and sufficient 
degrees of freedom in terms of control inputs must be available.   

In ATC, the ‘system’, ‘disturbances’ and the specific ‘goals’ (e.g., specific KPI thresholds) highly 
depend on the airspace under consideration. This requires a brief overview of the airspace 
organization.   
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Figure 2.1: Generic feedback control loop. 

 

2.2 System scope: airspace organization 

Within a Flight Information Region (FIR), the airspace is subdivided by altitude regions into several 
“sectors”, as shown in Figure 2.2. Each part of the airspace is the responsibility of a different team 
of controllers, each having different tasks. From top to bottom, the Upper Control Area (UTA) and 
Control Area (CTA) are controlled by Area Control (ACC). Closer to an airport, the Terminal 
Maneuvering Area (TMA) is handled by Approach / Departure Control (APP / DEP). In a cylindrical 
area around the airport, the Control Zone (CTR), Tower Control (TWR) is responsible for issuing 
take-off and landing clearances and monitoring runway and taxi movements.  

In the UTA, ACC generally deals with en-route air traffic featuring mostly high-altitude overflights. 
In the CTA, ACC may also need to handle inbound and outbound traffic to and from airports. For 
example, in the Netherlands the CTA is handled by the Dutch Air Traffic Control (LVNL), who need 
to take care of lower altitude overflights, clear aircraft to higher altitudes and inbound and 
outbound traffic to and from Schiphol. In the Netherlands, the UTA is controlled by Maastricht 
Upper Area Control (MUAC) handling mostly en-route traffic flying at cruising altitude. 

Each team of controllers may have different KPIs and/or KPI thresholds to take into account. For 
example, in the UTA and CTA, aircraft separation thresholds are commonly larger than in the TMA. 
In the TMA, landing intervals need to be considered, something which is outside the scope of ACC. 
In MAHALO, the scope is limited to ACC. 
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Figure 2.2: Generic airspace organization. 

 

2.3 Goals and outputs of Area Control 

In the UTA and CTA, a human or computerized agent in control of the system have several common 
goals to meet: 

● Safety: 

o Maintain vertical and horizontal separation between aircraft, by respecting separation 
minima (1000 ft vertical, 5 NM horizontal) 

● Effectiveness: 

o Ensure aircraft reach their navigational targets (i.e., designated sector exit waypoints) 

o Transfer aircraft to the adjacent sector(s) 

● Efficiency: 

o Minimize time delays upon reaching navigational targets 

o Minimize additional flown track miles of aircraft 

o Adhere to pilot and airline company wishes and preferences  
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When a human agent is in full control, goals related to human performances will be included. For 
example, “workload management” and “maintaining situation awareness (SA)” are important 
goals to take into account for air traffic controllers (Westin et al., 2016), who tend to control the 
system in such a way that it results is more predictable traffic patterns that are easier to monitor 
and regulate. By doing so, efficiency targets are commonly loosened at the benefit of lowering 
workload and increasing situation awareness.  

When a computer is in full control, workload and situation awareness (SA)constructs are irrelevant 
and thus higher system efficiency can be achieved. Note that this is also the point where human 
and computerized agents will differ (i.e., ‘optimize’ vs. ‘satisfice’), which has shown to contribute 
to acceptance problems when humans need to collaborate with computerized agents (Westin et 
al., 2016).   

 

2.4 Disturbances 

Although airspace use and route-allocation will be structured and optimized before flights are 
airborne, to achieve optimal system performance in terms of safety, efficiency and productivity, it 
is the unforeseen separation provisions, sequencing, weather and changing airspace constraints 
which inevitably require (small, tactical) changes in the pre-planned trajectories, see Figure 2.3.  

ATC is considered as an ‘open’ system, which is subjected to uncertainties that cannot always be 
predicted beforehand. Unexpected sector entry delays (e.g., due to delayed departures or control 
actions by agents in the neighboring sector) may result in predicted separation losses (i.e., 
conflicts) that need to be resolved. Avoiding unexpected weather cells will require aircraft to be 
re-routed, resulting in additional flown track miles and rerouting delays if aircraft speeds remain 
unchanged. The probabilistic nature of the ATC environment therefore makes it a dynamic control 
task where competing goals may change over time. This requires agents to adapt to new and 
unexpected circumstances and come up with creative solutions to meet system goals. 
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Figure 2.3: Common disturbances found in area control. 

 

2.5 Control inputs 

When facing system disturbances, the agent needs to be able to provide inputs to the system 
elements that will redirect the system’s outputs. In ATC, an agent can only influence the system 
by changing the states of each individual aircraft. In its most succinct form, the agent basically has 
three control inputs (i.e., clearances) to give to aircraft: altitude, heading and/or speed (see Figure 
2.4). 

Depending on the sector organization, different clearance types may be prioritized due to physical 
constraints in terms of aircraft flight envelopes and performance capabilities. For example, in the 
UTA where aircraft are flying at cruising altitudes, altitude clearances are prioritized over speed 
clearances due to narrow speed envelopes and slow acceleration and deceleration profiles. 
Additionally, speed changes are not encouraged as they will require aircraft to deviate from their 
ideal cruising speeds, which will negatively impact fuel consumption and therefore airline cost 
models. 
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Figure 2.4: System inputs, which are constrained by aircraft performance capabilities. 

 

2.6   Closing the loop: observability, controllability and stability 

To be able to successfully close the control loop, human and computerized agents will need to be 
able to observe the state of the system (i.e., observability) and be able to have sufficient degrees 
of freedom to influence the system (i.e., controllability). In closing the ATC control loop, human 
and automated agents therefore need to be able to observe: 

● the movement of air traffic 

● the states of individual aircraft 

● the type of aircraft (e.g., manufacturer) 

● the controlled sector geometry 

● vertical and horizontal distances between aircraft 

● location of navigational targets 

● procedural compliance 

● atmospheric conditions (wind fields, weather cells, etc.)   

Observing the above-mentioned system state is facilitated by several sensors that acquire 
information: 

● Primary (PR) and secondary surveillance radars (SSR), acquiring:  

o aircraft ID (SSR Mode A) 

o callsign (SSR Mode S) 
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o type and wake turbulence category (SSR Mode S)  

o Horizontal position (PR) 

o Flight track (PR)  

o altitude (SSR Mode C) 

o groundspeed (PR) 

o indicated airspeed (SSR Mode S) 

o Mach number (SSR Mode S) 

● Automatic Dependent Surveillance System-Broadcast (ADS-B), providing all of the above-
mentioned states including some additional information, such as: 

o Pilot’s Mode Control Panel (MCP) settings (e.g., autopilot targets) 

o Flight Management System (FMS) outputs, such as “next waypoint” of the planned 
trajectory and Estimated Arrival Times (ETA) 

● Meteorological services, providing: 

o Wind fields (wind speed and direction) per 2D location and altitude layer 

o Weather forecasts 

In terms of controllability, human and automated agents can only control the states of individual 
aircraft by issuing altitude, heading and/or speed clearances over time. One important aspect that 
determines the stability of closed-loop control is time delay. In ATC, it is common that system 
states are updated every radar update. Updates may range between five to ten seconds, 
depending on the specific radar installation. For surveillance data published over ADS-B, updates 
may be available every second. 

To successfully control a system that involves time delays between consecutive state observations, 
inter-related constructs such as preview and feedforward are important. Preview is defined as the 
provision of prior information about future reference changes. This includes, amongst others, 
knowledge about aircraft intent (e.g., flight plan data) and predicting where aircraft will end up 
after a certain amount of time (e.g., state-based extrapolation). Feedforward relates to accounting 
for disturbances before they have time to affect the system. For example, provisionally rerouting 
aircraft trajectories before a weather cell has manifested. Finally, feedback is defined as corrective 
actions based on the actual observed system response.  

In ATM operations, feedforward is commonly part of flow and airspace management where 
aircraft routes are planned years, months, weeks and/or days before actual flight and thus before 
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disturbances have manifested. Preview is mostly part of tactical ATC, for example in the core task 
of CD&R that aims at preventing loss-of-separation events before they have taken place. 

 

2.7    Implications for MAHALO 

This chapter described the ATC task as a generic control task. This is an important foundation, as 
it helps describe how human and machine might share a common control architecture and system 
goals, and allow ML design to focus on the different strategies each uses to close the control loop. 
The foll0wing chapter 3 will review our literature review into human (section 3.1) and machine 
(section 3.2) approaches to CD&R, and how they differ. 
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3. CD&R Methods  

The purpose of this chapter is to review and compare the CD&R methods used by humans and 
machines, to obtain an overview of past and current approaches. This aims to help MAHALO build 
a ML system capable of working with a human in carrying out CD&R.  Of particular interest in our 
current review were AI and ML approaches to CD&R. Therefore, a state-of-the-art literature review 
was conducted with the objective to identify recent approaches for solving the CD&R problem with 
the help of AI and ML. Notice that in some cases, theoretical and empirical work has been done 
into generic CD&R approaches, divorced from the agent. That is, some approaches apply to either 
human or machine. The output from this review will be used to obtain lessons for the MAHALO 
project and guide the development of a ML CD&R system 

CD&R is one specific, yet core, task in ATC. It serves the main purpose of meeting the system’s 
safety goals in terms of maintaining separation between aircraft well before a loss of separation 
has occurred. Note that when separation has been lost, pilots are responsible for avoiding mid-air 
collisions by following Traffic Collision Avoidance System (TCAS) instructions.  

Conflict detection (CD) involves predicting a loss of separation occurrence (either horizontal or 
vertical) ahead of time, making it a control task relying on preview. It can rely on state-based 
extrapolations and/or taking into account aircraft intent (i.e., planned trajectories), see Figure 2.5. 
Aircraft are considered to be in conflict when the predicted Closest Point of Approach (CPA) is less 
than the radius of the protected zone (5 nm horizontally) and less than 1,000 ft in altitude. The 
urgency of the conflict is determined by the time at which the CPA will be reached. 
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(a) State-based extrapolation (b) Intent-based extrapolation 

Figure 2.5: Conflict detection 

Conflict resolution (CR) involves the action that is undertaken to solve a conflict. In tactical control, 
this is done by issuing one of more control inputs (altitude, heading and speed) to one or multiple 
aircraft involved in the conflict. Here, humans generally tend to give one command to one aircraft 
at the time, whereas computers could issue several commands simultaneously to multiple aircraft.  

Section 3.1 takes a closer look at evidence on how human air traffic controllers achieve CD&R. 
previously proposed CD&R taxonomies in the literature. Section 3.2 details the method for the 
review of AI/ML approaches to CD&R. Section 4.3 then presents the results of this review activity 
by means of a CD&R taxonomy and overall discoveries. 

 

3.1    Human CD&R approaches 

There is a rich body of past research, including a few recent reviews, into the strategies and specific 
actions controllers apply in CD&R. Some of the main sources retrieved include: 

● Fothergill & Neal, 2008;  
● Hao, 2018; 
● Kirwan & Flynn, 2002;  
● Kuchar & Yang, 2000; 
● Pelegrin & d’Ambrosio, 2020; 
● Rantanen & Nunes, 2005;  
● Rantanen & Wickens, 2012;  
● Ribiero et al, 2020; 
● Seamster et al, 1993;  
● Van Dam, 2009; and 
● Yang, 2019. 
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Literature suggests that CD and CR generally involve  

● pairwise comparisons between aircraft 
● time scale of detection (i.e., how much preview in terms of look-ahead time is adopted?) 
● uncertainty in current and predicted aircraft states 
● time of resolution (i.e., when to take action (proactive vs reactive)) 
● type of actions (altitude, heading and/or speed) 
● direction of action (make aircraft fly up/down, left/right, faster/slower) 
● resulting traffic pattern and impact on efficiency goals (e.g., additional track miles, delays, etc.) 
 

Table 3.1 captures our provisional list of controller CD&R strategies. This list is a living document, 
and will be expanded over the coming months, in step with Work Package 3 activities. 

 

Category Principle Description

Make it safe first, before going further [with additional considerations etc.]

Need to have a fail-safe plan B

Anticipate that things can deteriorate (uncertainty)

Handle the emergency first – everyone else can wait

Keep it [the resolution] simple

Minimise the number of aircraft to move

Solve easy conflicts first

Look for the one key action that resolves the problem

Prefer resolutions which require less co-ordination

Leave the over-fliers alone

Identify conflicts pairwise

Reduce complexity

Penalise the one that needs something (leave alone the ones in steady state)

Inconvenience least people

Minimise the penalty for aircraft

Change in line with aircraft intentions

Give initial (level) change early on and then fine-tune later

Focus visual attention on crossing points and sector borders

Maintain a consistent scanning pattern

Adopt a look-ahead time between 5 and 10 minutes

Scan traffic in small sector area, then expand

Scan sector in regions

Search for closest aircraft pairs, or dense traffic areas

Adopt circular scan pattern (clockwise, counter clockwise, or spiral)

1. Compare aircraft altitudes

2. If same altitude, compare fl ight directions (e.g., head-on vs. crossing conflicts)

3. If same altitude and direction, compare speeds (e.g., overtaking conflicts)

Determine urgency and priority by estimating relative speeds and distances

In low workload conditions, wait and see before taking action

In high workload conditions, act immediately after detecting a conflict

First solve conflicts pairwise and later check for consequences on other traffic

Select resolution that requires least amount of monitoring and coordination

Select resolution that requires least amount of sector disruption

1. Prefer level changes; Try to keep aircraft at the same levels

2. vector aircraft; lock aircraft on headings when using vectors

3. Use speed solutions last (at cruise, speed enveope is only 10-20 kts) 

Turn slower aircraft behind (in order to minimise extra distance flown)

Put aircraft behind, rather than through the middle

Solve the head-on conflicts first

Turn faster aircraft direct to route, so it leaves sector before slower one on same route

Strategy

Attention

Contextual factors

Conflict 

Resolution

High-level 

principles

Conflict 

Detection

Attention

Strategy

Contextual factors

Safety

Workload management

Efficiency
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Table 3.1 Some controller CD&R strategies. 

Over the years, several CD&R methods have been developed. Thereto, multiple reviews have been 
conducted and CD&R taxonomies suggested. These have, however, not specifically focused on AI 
approaches for solving the CD&R problem. A seminal work in this context is that of Kuchar and 
Yang [2000], who created a taxonomy of CD&R that distinguished six basic CD&R functions:  

1. state dimensions considered (horizontal, vertical, or both);  

2. state propagation method (nominal, probabilistic, or worst-case);  

3. conflict detection threshold;  

4. conflict resolution method (prescribed, optimised, force field, or manual;  

5. maneuvering dimensions (speed, heading, vertical, or combinations); and  

6. number of aircraft managed (pairwise or global).  

Among the 68 CD&R methods and systems reviewed, Kuchar and Yang did not find a superior 
method. They identified several weaknesses with the methods reviewed, such as neglecting 
uncertainty, ability to handle system degradations or dilutes, and computational limits. They also 
noted issues of pilot and controller acceptance of CD&R systems.  

Ribero et al. [2020] recently extended previous taxonomies via an extensive review of CD&R 
methods in both manned and unmanned aviation. Over one hundred CD&R methods were 
reviewed. A taxonomy was proposed that classifies CD&R algorithms in ten categories divided 
across conflict detection and conflict resolution.  

For conflict detection methods, three categories were identified: 

1. the type of surveillance (centralised, distributed, or independent), 

2. trajectory propagation (state-based or intent-based), and 

3. predictability assumption (nominal, probabilistic, or worst-case),  

For conflict resolution methods, seven categories were identified. The fifth category, the level of 
control, distinguished between centralised and distributed methods. The following six categories 
were organised as sub-categories to the level of control category:  

1. the conflict resolution method (centralised: exact of heuristic; distributed: prescribed, 
reactive, or explicitly negotiated), 

2. approach to multi-actor (>2) conflicts (centralised: sequential or concurrent; distributed: 
pairwise sequential, pairwise summed, or joint solution),  
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3. the timescale on which avoidance planning takes place (centralised: strategic of tactical; 
distributed: escape/collision avoidance), 

4. manoeuvre employed for resolution (centralised: heading or speed; distributed: vertical or 
flight plan),  

5. obstacle types (centralised: static or dynamic; distributed: all), and  

6. optimisation objective (centralised: flight path or flight time; distributed: fuel/energy 
consumption).  

Of particular interest are the different conflict resolution methods applied. Exact and heuristic 
algorithms are used by a centralised CD&R system that strives to find the best global solution. 
Prescribed, reactive, and explicitly negotiated are categories of algorithms used in a disturbed 
CD&R system where solutions depend on the aircraft involved in the conflict. Prescribed 
algorithms derive resolutions from pre-defined rules. Reactive algorithms trigger solutions based 
on the intruder’s position and the conflict geometry. Ribeiro states that a common principle is to 
find the ‘shortest way out’. The Explicitly negotiated is the only category of algorithms that 
determine a solution based on a negotiation between the involved aircraft (an example is TCAS). 
Among all CD&R methods reviewed, Ribeiro found that about a third of the method applied 
conflict resolution methods that does not fit into above categories (e.g, by organising traffic flows).  

From Ribeiro et al [2020], the following insights are provided: the majority of methods reviewed 
were found to address tactical CD&R, distributed control, using a nominal predictability (i.e. does 
not consider uncertainty). The majority of methods were also limited to heading manoeuvres. 
Most approaches considered dynamic objects (e.g., other aircraft). For predicting the trajectory of 
aircraft, most approaches made use of state-based linear interpolation. Notably is that only three 
approaches considered all three tactical conflicts resolution manoeuvre available: heading, 
vertical, and speed.   

The paper did not distinguish between AI approaches to CD&R and conventional algorithms. 

In contrast to the previous reviews, Pelegrín and d’Ambrosio [2020] reviewed CD&R methods 
originating in the Operations Research community and proposed a taxonomy for classifying CD&R 
methods from a mathematical programming perspective. The framework comprises nine 
categories: dimensions (2D or 3D); motion (single line or multiple lines connected by waypoints); 
instantaneous (if maneuvers are initiated directly when the time horizon starts  or not); separation 
constraints (see below); resolution maneuvers (speed, heading, several flight levels); trajectory 
recovery (yes or no); in what way the formulation is discretized (time, space, maneuvers); type of 
mathematical programming model (Mixed-Integer Quadratic Programming MIQP; Mixed-Integer 
Nonlinear Programming MINLP; Mixed-Integer Programming MIP; MIQP + Mixed-Integer 
Quadratic Constrained Programming MIQCP; Bilevel Programming BP); and objective (deviation; 
fuel, time; largest conflict-free set; minimize number of conflicts; time; minimize number of 
conflicts, fairness, time). 
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The authors classified CD&R methods according to how their mathematical formulation (i.e. 
equation) of the separation condition that defines a conflict. The 21 mathematical programming 
formulations for CD&R reviewed explored in total seven different separation equations. These can, 
generally be divided into one of three categories: geometrical conditions that identifies and solves 
conflicts using the trigonometric relationships between aircraft; analytical conditions that applies 
analytical calculus, and crossing point conditions that solves the CD&R problem by referring to 
intersection of trajectories as the origin in calculations. 

Pelegrín and d’Ambrosio [2020] found that the majority of approaches rely on MIP or MINLP for 
solving the CD&R problem. Only one out of 21 methods reviewed approach the CD&R problem in 
3 dimensions, the rest assume 2 dimensions (heading and speed). Most methods were found to 
assume that aircraft motion is uniform (i.e. linear with no waypoints) and that resolutions are 
implemented instantaneously when conflicts are detected. Moreover, the majority of methods 
had the objective to minimize route deviation when calculating solutions.  

There are many parameters that the above taxonomies of CD&R methods do not consider. One 
example is the instance in time at which a solution is implemented. In general, most methods 
assume that implementing a solution instantaneously (i.e. when a conflict is detected) is most 
beneficial (e.g. it minimizes the heading deviation required while the separation distance 
requirement stays the same). When the solution is implemented then depends on the methods 
look-ahead time for conflict detection. Note that this is not necessarily how a human controller 
would solve the conflict. For once, it is unlikely that a human controller applies the identical strict 
look-ahead time in conflict detection. More importantly, the timing of an intervention can depend 
on other factors, such as the proximity of other aircraft that are not currently in conflict, but 
restricts the solution space if a resolution is to be implemented directly. By waiting a few minutes, 
leaving the detected conflict situation unresolved, the solution space may open up once the 
aircraft in proximity has moved away. The most suitable timing for resolving a conflict may also 
depend on factors beyond those associated with conflicts, such as the possibility of direct routings 
according to the aircraft’s flight plan which may be restricted now but shortly available, the 
proximity of adverse weather which promotes waiting with solving the conflict. Another excluded 
parameter regards the choice of aircraft subjected to the resolution maneuver, or whether both 
aircraft initiate de-conflicting maneuvers such as in TCAS. Some models may choose aircraft to 
intervene with randomly, while others do so deterministically according to e.g., rules of the air. 

Ribeiro et al [2020] evaluated the performance of four different conflict resolution algorithms on 
measures of safety (number of conflicts, separation losses, and conflict duration), stability (number 
of secondary conflicts), and efficiency (aircraft extra distance and time flown). The evaluation 
consisted of fast-time traffic simulations in the open-source Air Traffic Simulator BlueSky 
[Hoekstra2016]. The four algorithms were: 

● Modified Voltage Potential. Classified as distributed, reactive, state based, nominal, Pairwise 
summed, dynamic obstacles, and considers resolutions in heading, speed, vertical. Applies 
shortest way out. Based on [Hoekstra, 2002], 
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● Solution space. Classified as distributed, reactive, intent based, joint solution, nominal, only 
considers heading and speed, dynamic obstacles, applies shortest way out. Based on [Van 
Dam2009], 

● Explicit coordination. Classified as explicitly negotiated, distributed, state based, only heading, 
probabilistic, pairwise sequential, aircraft have deconflicting policies that determine the 
solution chosen.   Based on [Yang, 2019], and 

● Sequential cost. Classified as centric, heuristic, intent, probabilistic, sequential strategic, flight 
plan, chooses trajectory with lowest (path) cost. Based on [Hao, 2018]. 

To allow for comparison, the four methods were adapted so that all aircraft acted on a tactical 
timescale (3-5 minutes) and could perform the same maneuvers (heading and/or speed). For 
conflict detection, all algorithms searched for conflicts every second using a look ahead time of 
five minutes. Trajectory propagation was defined as linear (i.e. state-based). For manned and 
unmanned traffic, separation minima were defined as 5NM and 50m, respectively. In addition to 
the conflict resolution method, three different traffic densities were considered that reflect the 
gradual increase in traffic volumes from current day until 2035. 

Results showed that the Modified Voltage Potential and Solution space diagram methods 
performed better than the Explicitly coordinated and Sequential cost methods. Performance of all 
methods in general worsened as an increase of traffic density. Overall, the former methods 
resulted in less conflicts, less secondary conflicts (i.e. when solving one conflict causes another 
conflict), reduced the duration aircraft were in conflict, and reduced additional flight distance and 
flight time attributed to the conflict resolution applied. Noteworthy is that the Modified Voltage 
Potential method had the lowest number of separation losses, whereas the Solution Space 
Diagram caused a notably higher number of separation losses. This was attributed to an inability 
of the Solution Space Diagram method in finding a solution in some situations, and therefore not 
initiating a resolution maneuver. This limitation may be related to how initial versions of the 
Solution Space Diagram determined the ‘no-go’ zones of conflicts without applying a time-window 
that limited the algorithms look-ahead time.[CW1]  A reason for why the Modified Voltage Potential 
method performed best in terms lowest number of separation losses is that it allows for creating 
temporary secondary conflicts. While it is generally considered a risk to cause a secondary conflict 
situation, it may be the only way to solve some conflicts in high traffic density scenarios. 

Taken together, the comparison made by Ribeiro et al [2020] suggests an advantage for tactical 
conflict resolution, distributed methods with reactive algorithms that solve conflicts locally by 
using the “shortest-way-out” strategy (in contrast to searching for an optimal global solution). 
Given an ATC environment where control is distributed, such approaches appear most suitable. In 
contrast, today's strategic and tactical CD&R approach in ATC can be considered centralized in that 
the controller exercising control is responsible for separation assurance. This, however, does not 
rule out the use of decentralized CD&R methods for aiding the controller in CD&R. This may, in 
fact, represent a suitable division of responsibility between the automation and the human, where 
the human is responsible for finding the global best solutions, and the machine locally best 
solutions.  



 

 

 

© –2020 – MAHALO consortium.  
All rights reserved. Licensed to the SESAR Joint 
Undertaking under conditions 

31 
 

 

 

3.2    ML CD&R approaches 

Of relevance to MAHALO is how ML approaches to CD&R have been used in previous ATC related 
research. We therefore conducted, as part of this SOAR, a focused review into the literature 
specifically addressing ML applications in ATC. The purpose of the literature review was to 1) 
overview and determine the current state of the art in AI approaches in general, and ML 
approaches specifically, for solving the CD&R problem, and 2) provide a taxonomy of the AI/ML 
approaches used. This study extends previous work on ATC and UTM CD&R taxonomies proposed 
by Kuchar and Yang [2000], Jenie et al [2017], Ribeiro et al [2020], and Pelegín and d’Ambrosio 
[2020]. The goal is to use the framework as a guide to the MAHALO project for determining the 
most suitable method(s) and approach for developing a ML CD&R system.  

The literature review was conducted in July-September, 2020 and comprised three steps: First, 
relevant articles were searched using a set of keywords. The keywords were: conflict detection; 
conflict resolution; machine learning; and artificial intelligence. In addition, sub-terms to ML were 
used: reinforcement learning; supervised learning; and neural net/works. The following databases 
were searched: SCOPUS; IEEE Explore; Web of Science; and Google Scholar. Step 2 consisted of 
reviewing article abstracts, and selecting relevant papers for further analysis. In step 3, papers 
were evenly distributed among five researchers for an in-depth review. The articles were reviewed 
in a structured way using excel and summarised accordingly: 

● What was the paper about? 

● What were the main findings? 

● How is it relevant to MAHALO? 

The following inclusion criteria were denied: articles should discuss solutions for conflict detection 
and/or resolution in context of ATC and UTM using ML or other AI approaches. The search was not 
limited to a time period.  

In total 45 articles, written between 1998 and 2020, were selected based on the abstract review 
in step 2. The number of papers considered for the in-depth review was reduced to 28 after the 
decision was made to only focus on articles written after 2015. The main reasons for this were 
twofold: firstly the field of ML has seen a lot of advances and innovations that have rendered some 
of the previous papers and methods suggested in them outdated; Secondly the advances in the 
amount of computing power and the more optimized tools for using said computing power have 
led to certain applications and methods being viable where previously they would be considered 
too computationally expensive to be of any practical use. Eight articles were categorized as either 
literature reviews or concept papers that did not present a specific ML solution to CD&R. These 
were excluded from the review. Two articles were found to be close to identical and only one was 
retained for in-detail review [Tran et al. 2020]. The final list of reviewed articles totaled 19. 

 



Edition 00.02.00 

 

 

32 
 

© –2020 – MAHALO Consortium.  
All rights reserved. Licensed to the SESAR Joint 
Undertaking under conditions 

 

 

 

3.3    Literature review results 

We classified ML CD&R methods following a nine-category framework.  The objective was to create 
a framework that allowed for overviewing and comparing all the papers and their respective 
approaches. Table 3.2 details the 19 articles reviewed in relation to the AI CD&R methods 
framework. Table 3.3 details the abbreviations used for categories and classifiers used in the 
framework.  

The majority of research applying ML methods for CD&R have focused on the conflict resolution 
problem. Almost all approaches have relied on RL. Only a few have addressed conflict detection 
using ML methods. None of the research reviewed considered the transparency of the systems 
created. In terms of conformance, three papers have attempted to create conformal resolution 
advisories. Van Rooijen et al. [2020] (van Rooijen, 2020 in table) and Regtuit et al. [2018] (Regtuit, 
2020 in table) proposed individual sensitive systems building on SL and RL approaches, 
respectively, that strive to suggest personalized resolution advisories. Tran et al. [2020] (Tran, 2020 
in table) had the RL system learn from ATCo’s conflict resolutions during training, approaching 
conformance on a group level.  
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Table 3.2. CD&R methods reviewed. Listed by publication year, starting from oldest. 
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Table 3.3. Categories and classifiers of the CD&R methods taxonomy. 

Category Abbreviati
on 

Classifiers Acrony
m 

Problem 
addressed 

Probl Conflict detection 
Conflict resolution 
Both 

CD 
CR 
CD&R 

Avoidance 
planning 

Plan Strategic (20 min or 
more) 
Tactical (3-20 min) 
Collision avoidance 
(escape) 

S 
T 
CA 

Domain Dom ATM 
UTM 

ATM 
UTM 

Dimension Dim Horizontal 
Vertical 
Horizontal and vertical 
(3D) 

2D 
V 
3D 

Main AI 
approach 

App Machine learning 
  Supervised learning 
  Reinforcement 
learning 
  Unsupervised 
learning 
Genetic Fuzzy Systems 

ML 
SL 
RL 
UL 
GFS 

Multi-agent MA Yes 
No 

Y 
N 
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Feature 
engineering 

Feat Trajectory 
Time (binary) 
Pixel data 
Flight plan 
Secondary radar traces 
Conflict states (angle, 
CPA, time to CPA, exit 
point) 
Resolution command 
Coordinates space 
Coordinates velocity 

Tr 
Tb 

PD 
FP 
RT 
S 
 
Rc 
Cs 

Cv 

Resolution 
maneuver 

ReMan Speed 
Heading 
Altitude 
Time 
Turning time on sequence 
leg 
Runway allocation 

S 
H 
A 
T 
TT 

RA 

Resolution 
objective 

ReObj Minimize route deviation 
Minimize congestion 
Minimize delay 
Maneuverability penalty 
Consensus 
Merging 
Conformal 

MR 
MC 
MD 
MP 
C 
M 
Conf 

Conformance Conf Individual (human) 
Group (human) 
None 

I 
G 
N 

Transparency Trans Yes 
No 

Y 
N 

 

Three papers explored ML methods for only CD. Two of these were from the same group of 
researchers [Wang et al. 2019b; Wang et al 2020]. They compared in total six different ML 
approaches for CD. Five methods are considered SL approaches: Feed-Forward Neural Networks 
(FFNN), Multiple Linear Regression (MLR), Support Vector Machine (SVM), Gradient Boosting 
Machines (GBM), and random forests (RF). The K-Nearest Neighbour (KNN) method is a UL 
approach. In the first study where all six methods were compared, the MLR and SVM methods 
were found to perform the worst [Wang et al. 2019b]. These were excluded in the second study. 
The methods performing the best were the GBM and FFNN. 
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The majority of previous approaches have restricted CD&R to a 2-dimensional representation of 
the environment (aircraft fixed to one altitude) and limited resolutions maneuvers to heading 
changes. Only five articles considered CD&R in relation to a 3-dimensional environment, 
representative to the real world. Only one paper considered all three resolution types (heading, 
speed, altitude) for solving conflicts [Mollinga et al. 2020]. In the study by Liang et al. [2019] where 
CR in the TMA was explored, additional high-level resolution maneuvers were considered as part 
of a merging task. In addition to speed and time changes (i.e. arrange an expected time overhead 
a fix), two more resolution maneuvers could be used merging decision of aircraft along the same 
route for approach: the turning time on a sequence leg, and runway allocation.  

Several papers were written by the same or similar group of authors, indicating an overlap 
between these. Four research clusters were found to attribute to a majority (11) of the 19 papers 
reviewed in detail. Two papers from Wang et al. [2019b; 2020] explore ML methods exclusively for 
CD. Researchers at the Technical University of Delft (TUD) have in two studies explored conformal 
ML approaches for CD&R. Brittain and Wei form one research cluster originating in the USA, with 
three papers published [Brittain et al. 2019, 2020a, 2020b]. Their ML method is among the more 
advanced, relying on deep RL (DRL), Proximal Policy Optimization (PPO), and a Deep Distributed 
Multi-Agent Variable framework with attention networks. However, approach is limiting as it only 
envisions a 2D environment where the only resolution option is heading changes. The fourth 
research cluster originates from Nanyang Technological University in Singapore and the Air Traffic 
Management Research Institute (ATMRI). This group of researchers has explored an advanced RL 
approach making use of a Deep Deterministic Policy Gradient (DDPG) algorithm.  

Following initial review, the review team discussed the overall quality and relevance of the work 
presented in each article. It was found that most papers reviewed had not modelled the domain 
environment realistically and in line with MAHALO assumptions, due to such factors as: the usage 
of a simplified state space (2D environment, for example), the limitation to only use a subset of all 
the possible conflict resolution methods, the fact that the focus of the article was not aligned with 
that of MAHALO (in one case the article focused on deconfliction on a purely strategic level), 
among others. 

This discussion led to some conclusions being drawn and to a rating system being made in order 
to sort the papers by relevance and applicability to MAHALO. A two-step rating system was used. 
The first step consisted of culling non-relevant literature. The criteria for passing the first step was 
that a paper should present an ML approach for conflict detection, conflict resolution, or both. 
Following this step,20 papers were retained (also in Table 3.2). 
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3.4    Implications for MAHALO 

Whereas CD is relatively binary (it is a conflict or not)3, CR has many more possible actions and an 
almost an infinite number of possible outcomes (especially on larger times scales). This is where 
humans and computers will differ most: humans tend to adopt a more limited look-ahead time 
(e.g., 10 minutes) and therefore may have a limited view on the many possible outcomes of 
actions. Computers could potentially evaluate almost an infinite set of actions and outcomes, 
similar to how the chess-playing computer Deep Blue could evaluate 200 million positions per 
second [Campbell, 1999].  

Differently from chess, operational conditions in ATC are often less predictable. Anticipating 
multiple steps ahead into the future requires the adoption of longer look-ahead times, featuring 
increased uncertainty regarding aircraft (navigational) states and environmental disturbances 
(e.g., changing wind conditions).  

 Some of the conclusions impacting MAHALO from the literature review were: 

● The need for a conflict detection and a conflict resolution algorithm. 

● The fact that using the conflict detection and resolution algorithms in conjunction with each 
other appears to be the more efficient technique.  

● The most desirable ML method for the conflict detection is likely to be a Supervised Learning 
algorithm.  

● The most desirable ML method for the conflict resolution is likely to be a Supervised Learning 
algorithm in conjunction with a Reinforcement Learning one so as to be able to learn from 
expert knowledge but also be able to find more optimal solutions based on conflicting 
objectives (conformance to operator, additional miles flown from original flight plan, etc).  

One of the main concerns with using ML agents to help ATCos is the likelihood that the ATCo will 
accept the solution given by the ML agent. In this context it is important to consider those 
algorithms that attempt to be conformal to the specific ATCo they are assisting as well as those 
algorithms that seek to become more transparent and thus provide an explanation for the 
suggested solution.   

It is also important to mention that ATM, in particular, and aviation, in general, are so called “safety 
critical domains”. this means that safety comes first and foremost before any other goal the system 
might have such as reducing fuel consumption or travel time. All this means that having a system 
that is both reliable and safe is a primary concern when it comes to considering what methods and 
approaches can be used within the MAHALO context. This disqualifies several systems and 

                                                           

3 Loss-of-separation has a legal / binary definition (e.g. 5nm and 1000 feet vertically), but conflict 
threshold, and conflict detection methods, can vary. 
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methods that do not have a good enough performance. For some applications, for example a voice 
recognition software on a smart television, a 75% success rate might be acceptable but for ATM 
this is absolutely not the case.  

Overall, literature review supported our initial hope that ML methods can provide attractive 
solutions to solve both conflict detection and conflict resolution problems, as displayed by the 
articles described. It is, thus, accurate to say that ML is one possible promising approach to be used 
in future ATC systems. 
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4. Machine Learning 

This chapter will briefly introduce the domain of Machine Learning (ML) and discuss its 
applications both in general, and in relation to ATM. For MAHALO, ML model explainability and 
transparency is an essential part of the research. 

Section 4.1 sketches a short history of ML developments.  

In section 4.2, a classification of current ML approaches is provided.  

Sections 4.3 and 4.5 describe some relevant applications of ML, both in general and in the field of 
ATM.  

In section 4.4 the challenges of ML are discussed. 

Section 4.5 contains an analysis of the transparency challenges and opportunities associated with 
ML.  

This chapter will end with a summary of implications (section 4.7) for the MAHALO project. 

 

4.1    History 

Machine learning (ML) is a fairly recent outgrowth and subset of the Artificial Intelligence (AI) field. 
Unlike traditional AI, ML does not rely on pre-programmed ‘if-then” approaches. Rather, ML 
generally involves relating input to output via a self-organising process. Much of the early history 
of ML comes from the field of statistics, for example Bayes’ Theorem that allows inferences based 
on prior knowledge (data). 

A key property in ML is that the models can automatically improve themselves based on the 
availability of new data. This is analogous to human learning, where connections in the brain are 
continuously being adapted to create memories and to make decisions based on inputs from the 
environment. 

In the 1940’s McCulloch and Pitts [McCulloch, 1943] used this analogy of the human brain to 
describe the workings of neurons using logical calculus, thereby creating a model of the biological 
neuron, which later developed into artificial neural networks (ANNs). Although early ANNs were 
mainly used to study the behaviour of biological networks, they became more powerful as generic 
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function approximators in the 1980s [Rummelhart, 1986] with the development of 
backpropagation methods, which allow for automatic updating of the neural network weights such 
that a model can be trained to approximate a given input-output relation in a dataset. Since then, 
ANNs have been the main type of models used in ML, although many other model structures (e.g. 
decision trees [Kotsiantis, 2018], and genetic algorithms [Lee, 2013]).  

 

4.2    ML Methods and Approaches  

ML generally distinguishes three high level approaches: Supervised Learning (SL), Unsupervised 
Learning (USL) and Reinforcement Learning (RL). Figure 4.1 presents a high-level overview of the 
most currently popular ML methods, grouped under each of these three classes. 

 

 

Fig 4.1 Some popular ML methods, grouped by general approach and application. 

 

In SL a model is trained on labeled data, meaning that a set of input and corresponding desired 
output is presented to the model. The model then has to adjust its parameters such that a good 
fit is made between the model output and the desired output. SL is often used for classification 
tasks, for example to interpret handwriting or to identify in a camera picture which blob of pixels 
represents a bicycle or a pedestrian. Typically, there needs to be a large set of pictures in different 
environmental settings, light and weather conditions etc, to be able to train such a model with a 
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high level of accuracy for the intended use case.  [Asadi 2009] presents an example of the current 
approaches used for SL. SL training is based on a cycle of forward propagation of the input followed 
by a backpropagation of the error (desired vs actual output of the network) where the weights of 
each neuron are adjusted. 

USL refers to machine learning approaches for investigating data sets to find patterns and structure 
such as classes and relationships. In USL there is no set of labeled or desired data present in the 
training stage. Instead, the model has to adjust its parameters in such a way that the model outputs 
satisfy some specific properties, for example that the output is clustered into a possibly 
predetermined number of groups. USL is often used to discover patterns in data, since it does not 
require the data to be labelled a priori. [Sathya 2013] presents a comparison between the 
approach taken by USL and SL.  

RL, unlike SL and USL, is mainly used for agent based tasks, where the agent is interacting with the 
environment and thereby changing the state of the environment that the agent can observe. A RL 
model can be described as a trial and error process that comprises the following fundamental 
parameters: an environment that is assessed at a certain point in time. The RL model interprets 
and describes the environment in terms of states [Nguyen 2019]. The RL agent can act on these 
states by performing actions. The action to be performed (i.e. the decision made) depends on the 
inferred state and is governed by the RL agents policies. The possible actions that can be taken can 
be described in terms of an action space, which often is defined as discrete. A policy is considered 
deterministic if the behavior is predictable.  If the behavior is unpredictable, the policy is stochastic. 
An ‘optimal’ deterministic policy can be developed from a stochastic policy by means of policy 
improvement, where the agent is allowed to update its policy until a better policy cannot be found.  
When an action has been performed, the agent evaluates the outcome based on a reward 
function: the behavior is reinforced if the outcome is desirable according to this function, and 
changed if the outcome is undesirable.  

In RL there is also no set of desired outputs that is given to the model. Instead a reward is provided 
to the agent based on the current state that the agent can observe. The model then has to modify 
its parameters such that the model outputs change the state of the system in a way that maximizes 
the expected sum of future rewards. An RL agent’s decision process and policy is typically modeled 
using a Markov Decision Process (MDP), where the goal is to find an optimal policy that determines 
the actions taken for different states. MDPs are forming the theoretical foundation for many RL 
algorithms. An MDP model of a decision process is defined in terms of a list of elements to be 
considered (i.e. a tuple): typically a 4-tuple consisting of element S for describing the state (I.e. 
state space), element A for the available actions (I.e. action space), element P for the probability 
that an action will lead to a certain state, and element R for the reward function. In an MDP the 
future state is only a function of the current state and current action, meaning that previous states 
do not directly affect the future state. 

If a system is not Markov, i.e. when the future state depends on other things than the current state 
and action, the RL agent is not guaranteed to converge to the optimal policy.   A comprehensive 
introduction to RL and some of its principal methods can be found in the book by Sutton and Barto 
[Sutton, 2017]. Additionally, there are several extensions to the traditional RL approach that are 
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capable of handling processes that do not meet the conditions of an MDP. As an example, in [Liang 
et al, 2019] a Semi-MDP is used. These extensions are particularly useful when considering Multi-
Agent scenarios where the MDP conditions are no longer met, for example, in [Chu et al, 2020]. 
Recent developments in RL include the usage of Deep Neural Networks, leading to the creation of 
the subset known as Deep RL. A comprehensive survey on the state of Deep RL can be found in 
[Arulkumaran, 2017].  [Hongmin et al, 2020] gives a more recent overview of current RL methods, 
see figure 3.2. 

 

Fig 4.2 Overview of RL methods from [Hongmin et al, 2020]  

 

4.3 Domain applications of ML 

This section will list some of the major applications of ML. Applications in the field of ATC/ATM will 
be treated separately in section 4.6. It is out of the scope of this chapter to give a complete review 
of all ML applications, but the main fields will be treated and a few specific examples of 
applications will be shown. 

Machine learning is being applied in almost every field of science. A few examples of ML 
applications are: 

● Natural language processing 

● Computer vision 
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● Financial market analysis 

● Handwriting recognition 

● Adaptive control systems (e.g. robotics, automotive, process industry) 

● Optimization 

● Health monitoring and maintenance predictions 

● Board games (GO [SIlver et al, 2016], Atari [Mnih et al, 2013]) 

Figure 4.2 shows an example of how ML is used to classify objects in the camera view of a car. The 
model is capable of distinguishing cars, other road users, road signs, traffic lights, road markings. 
Based on this information, an automatic controller can steer the car and avoid obstacles. 

 

Fig 4.2. ML for automotive computer vision ( https://www.tesla.com/autopilotAI (Sep, 2020)) 

 

In 2019, Springer published a book on Lithium-Ion Batteries that was written by a machine [Author, 
2019]. It contains a summary of the recent literature of that field and has auto-generated 
summaries and links to other articles. Perhaps the most advanced system for text generation is 
OpenAI’s current GPT-3 model, which produces humanlike prose so convincing that it has been 
called ‘too dangerous to release.”  

ML is becoming ubiquitous in day-to-day life: personal assistants on virtually every smartphone 
(Amazon’s Alexa and Apple’s Siri, among others), ML algorithms that calculate how much we will 
pay for a cab ride given the supply and demand of the current area (used by Uber, for example), 

https://www.tesla.com/autopilotAI
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email filters that “learn” how to better filter malware and spam and recommendations on products 
based on previously bought or searched for goods on most online retailers. Photo editing software 
uses ML to offer features such as content-aware fill, where parts of an image can be filled based 
on previously learned patterns or classifications.  

It can be concluded that AI and ML in particular is becoming  normal and accepted in everyday life, 
even if it is not always understood. In Section 3.6, a detailed literature study on application of ML 
in ATM/ATC will be provided. 

 

4.4    Challenges of ML 

Although ML has seen many successful applications, there are still many challenges in ML that hold 
back its widespread application. This section will discuss some of these challenges and how they 
are going to be addressed in the MAHALO project. 

The challenges will be split into three main categories: 

1. Data quantity and quality 

2. Hyperparameter tuning 

3. Explainability 

4.4.1 Data quantity and quality 

ML methods are known for their large data requirements. The efficiency of identifying patterns in 
data is low compared to what humans can do. However, because ML can operate fast, there are 
applications where ML outperforms humans (e.g. Alpha Go).  

The quality of the data is important, since ML models are in general poor in extrapolating to unseen 
data. This means that the model that is trained can be a good fit for the data it was trained on, 
while having bad performance for a different realisation of the input set from the same generating 
process. This is also linked to the process of overfitting, where so many parameters are used in the 
ML model, that the model learns to fit to such a level of precision that noise on the input data is 
also modeled. This leads to poor generalisation, since a new batch of input data with different 
noise, will give incorrect outputs. Humans have great skill in generalising inputs and behaviour, 
since we can often make good decisions in situations that we have never seen before, but which 
are similar in some sense to what we have experienced before. This skill is what is lacking in ML 
algorithms, where similarity is attempted to be captured by creating features in the input space. 
Even when handcrafted features are presented to the ML model, the performance is not close to 
what humans can do. The ultimate goal is to have the ML model learn by itself what relevant 
features are and what elements of the input are important when it comes to determining similarity 
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to previous experiences. Until these skills are getting close to the human level, ML models will 
need much more data to converge to a good output. 

Training data should be rich enough, and a reasonably approximate (unbiased) representation of 
the data for which the ML model will be used in operation. For MAHALO this means that enough 
data for training the ML models is required. This will likely be a mix of human generated data, from 
expert air traffic controllers, and computer-generated data, for example from existing expert 
systems. 

Related to data quality and quantity is the way how data is presented to the ML algorithm. 
Information from a data source can be represented in different ways before it is fed to the ML 
algorithm. It can even be pre-processed in order to extract the relevant information, or to discard 
information that is deemed irrelevant. This step of processing the information from the data 
source before it is fed to the algorithm is known as Feature Engineering.  

 

4.4.2    Hyperparameter tuning 

A major challenge of ML is the dependency of the outcome of the learning process on the settings 
of the algorithm that is being used, something that is nicely caricatured by the cartoon of figure 
4.3. 

 

 

Fig. 4.3. Machine Learning tuning https://xkcd.com/1838/ 

https://xkcd.com/1838/
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ML models often consist of many parameters or coefficients, such as the weights in a neural 
network, but besides this there are settings that determine how the training is performed. These 
settings are called hyperparameters, which distinguish them from the parameters of the model 
itself. For example, when looking at Reinforcement Learning these are some of the 
hyperparameter s[Sutton 2017]: 

● Learning rate: determines the step size in the learning process 

● Discount factor: determines relative weight of immediate rewards versus long term rewards 

● Exploration rate: trades of exploration and exploitation of knowledge 

● Reward function: tries to capture the goal for the agent 

● Model topology, e.g. how many layers to use in a neural network 

● Parameter initialisation 

The high dimensionality in hyperparameters that needs to be tuned, together with the lack of 
transparency of ML models makes designing and tuning ML models challenging. Tuning of 
hyperparameters in ML often requires expert knowledge or brute force methods, although some 
generic approaches have been developed that claim they can optimize hyperparameters for any 
ML model [Wu et al 2019]. An additional difficulty is that hyperparameters do not generalise well 
to different applications for the same algorithm, meaning that an ML algorithm that is designed to 
perform an ATC task can have very different optimal hyperparameters then the same algorithm 
applied to control the motion of a UAV.  

There is expert knowledge available within the consortium on hyperparameter tuning of RL and SL 
algorithms, but also automated optimisation tools can be employed. 

 

4.4.3    Explainability 

This section provides a computer science background on transparency, especially from a ML 
perspective. For a Human Factors (HF) perspective on transparency, see section 5.3. 

As previously discussed, some ML models lack transparency, which prevents the growth of shared 
awareness and shared intent between machines and humans [Bhaskara et al 2020]. A deep neural 
network with multiple hidden layers and possible thousands of connections is a good example. 
This model can represent the policy of a ML agent that, presented with a certain input, will 
generate a suggested action to take. However, even if the output of the action seems right to the 
human observer, the human cannot understand the process of how this output is determined by 
just looking at the neural network weights. There is no clear causality between a change in inputs 
and a change in output of the model, because the relationship depends on thousands of 
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parameters. It is also generally not clear how the output of the model will change, with constant 
input, when one of the model parameters is modified. 

There are many approaches within the AI community that strive to explain aspects of how the 
system works or how a particular output was derived. In the AI community, the term transparency 
is used in context of recommender systems research [Ricci, 2015], while other sub-communities 
use similar terms. The most notable are ML interpretability [Murdoch, 2019], Explainable AI (XAI) 
[Gunning, 2017], and intelligibility of context-aware systems [Bellotti, 2001].  

Explainability of ML is part of a broader concept of explainability of Artificial Intelligence, XAI. 
Within ML some effort has been made on making the models more explainable. For example, in 
RL, there are ways to decompose rewards that the agent receives, such that after training one can 
get an idea of which parts of the reward function were most used to converge to the final policy 
[Juozapaitis et al 2019]. For deep neural networks, which can be used in either (un)supervised 
learning or reinforcement learning, there are possibilities to visualize which parts of the input 
(features) are most important in generating an output [Seifert et al., 2017]. 

In RL, the output of the ML model is an action that the agent takes. Therefore, the mapping from 
input to output can be seen as a control policy or control law. This policy is strongly dependent on 
the reward that is assigned to states and actions. The lack of transparency in the ML model can 
lead to surprising and unexpected behaviour of the agent. For example, when a robot is taught to 
find the shortest path to a goal state, then a common way to give rewards is to penalise every step 
taken, in order to minimise travel time, to give a reward for reaching the goal, and to give 
additional penalties for hitting any obstacles on the way. If the reward for reaching the goal is not 
set high enough, then the agent will learn to hit the closest obstacle it can find, thereby ending the 
episode so it does not have to collect penalties for every step it would take to reach the goal. This 
is completely opposite to the behaviour that we want to see, but the agent is not malfunctioning 
because it is still maximising its expected sum of future rewards. There are many examples of 
unexpected behaviour like this in RL research. Therefore, careful selection of the reward function 
is an important part of the ML algorithm design. 

In the context of AI and ML systems, transparency becomes intrinsically difficult to achieve due to 
the amount of data processed and complexity of the systems (e.g., multiple deep layers, number 
of rules) that greatly exceed human abilities to timely make sense of the data. Echoing 
transparency, ML interpretability has been defined as the “ability to explain or to present in 
understandable terms to a human” [Guidotti, 2018]. In the field of interpretable ML, Guidotti et 
al. [2018] found that graphical decision tree representations and textual decision rules (i.e., ‘if-
then’ algorithms) are among the most commonly used methods for explaining both the ML model 
(i.e., global explanation) and its specific output (i.e., local explanation). The output of linear models 
is often explained by highlighting key input parameters and their relative importance. Similarly, 
explanations of deep neural networks (DNNs) used for image recognition often make use of either 
saliency mask, which visualizes key areas/features in the input image, or activation maximization, 
which determines key neurons in certain layers activated by the input image. Example methods in 
image classification using convolutional neural networks (CNNs) are the Pixel-Wise Decomposition 
(PWD), which uses heatmaps to visualize individual pixels of the input image that determine the 
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output [Bach, 2015], and the Visual Back Prop (VBP) method, which uses masks to visualize the set 
of pixels in the input image that determine the output [Bojarski, 2016]. 

Other recent developments include, for example, Local Interpretable Model-Agnostic Explanations 
(LIME) [Ribeiro, 2016], Contextual Explanation Networks [AlShedivat, 2017], and Contextual 
Decomposition [Murdoch, 2018]. However, some have been shown to be unstable (i.e., LIME) by 
providing different explanations for similar inputs that prevent their use in high stake domains 
[Alvarez-Melis, 2018]. Contextual Explanation Networks is an interesting approach to XAI that 
combines ML methods and probabilistic models [Al-Shedivat, 2017]. Contextual Explanation 
Networks processes a subset of input features and generates parameters for a sparse linear model 
which can be assessed by domain experts. Subsequently, the generated model is applied to 
another subset of inputs and produces a prediction [Al-Shedivat, 2017]. According to the 
developers, this approach is robust and a candidate for high stake domains. Contextual 
Decomposition [Murdoch, 2018] provides explanations by decomposing the output. Although 
primarily used for natural language processing, this approach should be able to provide 
importance scores for individual features and feature interactions also for other LSTM-based 
models and domains such as aviation. Moreover, reward decomposition approaches have been 
used to explain decisions, in particular action selection, of RL agents [Juozapatis, 2019]. 

Murdoch et al (2018) proposed a framework for determining which interpretable ML method to 
choose when trying to understand how a ML model has addressed a particular problem. The PDR 
framework comprises three criteria to consider: the ML model’s Predictive accuracy, Descriptive 
accuracy, and Relevance. The two accuracies relate to the different errors that can occur in a ML 
model: either when interpretable ML methods are applied to understand aspects of the ML model 
in the model stage when data is processed and relationships learned (Predictive accuracy), or when 
interpretable methods are applied to analyse and understand the output of the ML model 
(descriptive accuracy). Relevance determines how well the interpretable method affords its 
intended audience (e.g., users) insight to the problem the ML models is attempting to solve.  

Murdoch et al also reviewed a large number of interpretable ML methods and categorised them 
as being either model-based or post-hoc based. Both strive to increase the descriptive accuracy.  

Model-based interpretability methods are further divided into five categories: 

● Reduced sparsity approaches: the assumption is that it will be easier to understand the ML 
model if the number of parameters, or features, considered by the interpretable ML method 
are reduced. The objective is often to determine key features driving the prediction/outcome. 
An example method is sparse coding. 

● Simulatability approaches: the assumption is that understanding of the ML model increases if 
the user can ‘simulate’ (i.e. reason) the ML model’s decision-making process. Example 
methods are decision trees and rule lists.  
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● Modular approaches: the assumption is that understanding can benefit from considering parts 
of the ML model independently. Example methods include generalised additive models, 
attention, and modular network architectures.  

● Domain-based feature engineering approaches: the assumption is that understanding 
increases if the features used by the ML model are created (or selected) using domain 
expertise.  

● Model-based feature engineering: the assumption is that understanding can benefit from 
having a ML method automatically determining the features from the data and provide 
descriptions of their structure. Several unsupervised learning methods are given as examples, 
such as clustering, matrix factorisation, and dictionary learning. Other methods such as 
principal component analysis, independent components analysis, and canonical correlation 
analysis are exempted, which reduce the number of dimensions of the original data.   

Post-hoc interpretable methods are further divided into two sub-approaches with six categories: 

● Dataset level approaches consisting of: 

o Interaction and feature importances: the assumption is that understanding can be 
increased by showing the importance of individual features, or the importance of 
specific interactions between features, for a specific output. Examples of feature 
scoring methods have been used with neural networks, random forests, and generic 
classifiers. 

o Statistical processing of features: the assumption is that understanding can benefit by 
converting raw values of features to statistical confidence measures and determine if 
a feature is statistically significant in relation to the prediction/output.  

o Visualisations: The assumption is that understanding benefits from visualising what a 
ML model has learned. Example methods include using regression plots for linear 
models. For image data processed by s, example methods include applying visualising 
filters, revealing responses of individual neurons, and grouping different neurons. For 
LSTMs, tools are proposed for tracking the ML models decision process. 

o Analysing trends and outliers in predictions: the assumption is that a ML model can be 
better understood by revealing trends and outliers in the data.  

● Prediction level approaches comprise methods used to increase the understanding of how a 
ML model makes specific predictions. Approaches consists of: 

o Feature importance scores: the assumption is that by scoring, or otherwise indicate, 
how important different features are for a specific prediction/output. Examples 
include tabular visualisation of how different features are weighted for a particular 
output, or using heat maps to highlight important aspects in an image.  
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o Other than the above, such as methods for revealing the importance of interactions 

between features for a prediction/output.   

Despite the amount of research on interpretability, there is a shortage of empirical research 
exploring the effects of transparency on acceptance and trust [Wang 2016]. Research on 
transparency in the AI domains has been criticized for focusing primarily on how to build 
explanations while neglecting the underlying psychology and human interpretation of them [Abdul 
et al.  2018; Murdoch et al. 2019]. 

 

4.5 ML applications in ATC  

Recent years have seen an increased interest in AI solutions for the aviation and ATC community. 
For example, ML and big data techniques have been explored to improve the accuracy in trajectory 
prediction [Koyuncu, 2017; Vouros, 2018], to identify novel route patterns and predict airlines’ 
route selection [Marcos, 2017], and for speech recognition of ATCo-pilot communication [Helmke, 
2018]. In the FLY AI Report, the European Aviation/ATM AI High Level Group (EAAI HLG) recently 
concluded that AI solutions for realising future ATM operations (i.e. the digital European sky vision) 
must be trustworthy and human centric [EAAIHLG, 2020]. Among key areas requiring more 
research on AI solutions for human-machine collaboration and in safety-critical operations. The 
report also provides an overview of completed and ongoing ATM AI/ML research. 

In current operations, controllers work with advanced automation support tools and safety nets, 
such as While the FLY AI report identifies AI solutions as reasonable for further developing such 
systems, there are significant challenges that require further research [EAAIHLG, 2020]. Notable 
among these are issues related to the: 

● Controller’s understanding of these systems and their reasoning. Further research is required 
on how to make such systems transparent and their behaviour explainable.  

● Methods for achieving a controller-automation partnership. 

A requirement is to involve operational staff early on in the design process of such systems. 

To address capacity bottlenecks during en-route operations, European ATM is targeting an 
operational environment with the core functions of trajectory-based operations, flight-centric 
services, dynamic airspace usage, free-route airspace. ATC automation support system 
incorporating AI, and in particular ML, is considered a key enabler for future advanced separation 
management systems where controllers and automation collaborate to detect and solve conflicts 
on strategic and tactical time windows [EAAIHLG, 2020; SESAR, 2019]. There has been much 
research into the possibility of using several different ML approaches to assist the controller in 
CD&R, through conflict resolution suggestions, and into the use of ML as the basis for fully 
automated ATC. For the purposes of the MAHALO project we are mainly concerned with the 
applications that relate to having ML as an agent collaborating with the executive controller in 
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tactical CD&R. Tactical CD&R here refers to the time window between collision avoidance 
measures (i.e. the time between loss-of-separation and CPA) and strategic CD&R (>20 minutes 
before CPA).  

 

4.6 Implications for MAHALO 

R & D into ML is moving incredibly quickly these days. We were therefore pleased to confirm, 
through our review, that our initial aim of applying ML to separate CD and CR functions seems 
workable.  Both of these lend themselves to automation, and we have a short list of candidates to 
evaluate further. Development of workable models will certainly require testing and tweaking. 
However, we came away from the review confident that this is achievable. 

It is also clear that challenges remain in using ML. These have primarily to do with data 
requirements, and in procedures for parameter tuning. These issues seem manageable.  

Finally, explainability (transparency) is an ongoing challenge with ML models in general, and with 
some specific approaches in particular. This issue of explainability was a known ML issue, and lies 
at the heart of the MAHALO project.  
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5. Human Performance in ATC 

Chapter 5 summarises our review into human performance aspects of ATC, that are relevant to 
MAHALO.  This chapter focuses primarily on automation conformance and transparency, two 
constructs that are key to MAHALO.  

This chapter will also briefly cover related concepts of trust, acceptance, and user reliance on 
automation.  

Finally, it will identify implications for the MAHALO project. 

 

5.1 An information processing model of ATC 

The ATM Master Plan shown in figure 1.4 (SESAR, 2019) uses the Levels of Automation (LOA) 
framework of Parasuraman, Sheridan & Wickens [2000], which distinguished LOAs (low- to full 
automation) from broad task classes (acquisition, analysis, decision, and action). This perspective 
fits well with our evolving view of the ATC information processing cycle, in which controllers detect 
problems, formulate plans, implement those plans, and evaluate outcomes, in an ongoing cycle. 
As shown in figure 5.1, this cycle has two important implications for MAHALO.   

First, notice that the initial acquisition-analysis phase corresponds to the conflict detection 
function, and the subsequent decide-act phase corresponds to the conflict resolution cycle. 
Second, this perspective allows us to identify the four subfunctions of CD and CR. Together, this 
can help us to define compatible human- and machine subfunctions. 

 

Fig 5.1 The information processing cycle of ATC. 
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The following sections 5.2 and 5.3 will now review human performance issues in ATC, through the 
lens of two constructs that are key to MAHALO: automation conformance, and automation 
transparency. 

 

5.2 Automation conformance 

5.2.1 Theoretical foundations 

Automation is typically developed to optimize the performance of a task or solution to a problem, 
beyond that of human capabilities and preferences. In contrast, humans tend to apply heuristics 
that satisfy rather than optimize performance [Simon, 1956; Gigerenzer, 2011]. Westin et al. 
[2016] argued that in contexts where humans and automation are expected to work together, the 
divergence in decision-making processes can negatively affect human acceptance and trust of the 
automation. Some researchers have therefore proposed automation that can adapt to an 
individual’s needs and preferences [Westin, 2016; Liu, 2011; Szalma, 2009; Parasuraman, 2012]. 

The term strategic conformance was introduced to describe the apparent match between human 
and automation solutions [Westin, 2016]. This similarity is external, overt, and observable, and is 
the extent to which cause and effect can be observed. Conformance does not provide an explicit 
explanation for the output. Instead, conformal automation supports understanding by providing a 
solution that, in appearance, matches the strategy or solution preferred by the individual. To the 
individual, the solution makes sense and therefore no further explanation is required. Since 
conformance is an attribute of the automation, it requires that the automation know something 
about the individual's preferred strategy or solution is. Only with this knowledge is the automation 
able to provide an output that can be considered conformal. The concept of strategic conformance 
took inspiration from the concept of cognitive tools proposed in the European Commission 
sponsored Role of the Human in the Evolution of ATM (RHEA) project (RHEA, 1998) and later 
explored in the Conflict Resolution Assistant (CORA) project [Kirwan, 2002].  

MUFASA proposed an information processing model of automation reliance, which placed 
strategic conformance within the broader context of how/whether an operator comes to trust, 
accept, and rely upon an automated decision aid (figure 5.2). 
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Figure 5.2 Controller reliance on automation (after MUFASA, 2013). 

  

In this model, an operator decides whether to accept automation’s advice (‘should I use the 
system’s advice?’) based on a combination of external demands (e.g. time pressure) and internal 
demands. A large part of these internal demands is made up of trust in the system, based on both 
longer-term propensities to rely on automation, but also on an updated assessment of the 
observable and inferred functioning of the system. Essentially, trust and subsequent reliance 
increase as experience demonstrates that automation ‘does the right thing’ (or, rather, does it the 
way I would do it). Notice one unfortunate implication of this model, for reasons of designing 
future advisory automation: if the system is NOT used, there is no experience on which to build 
trust. One paradox of advanced automation could be: which comes first, trust or reliance? The 
MUFASA project proposed that the notion of strategic conformance could break this impasse, at 
least for novices. If automation mirrors what I would do, I will come to trust it. 

Conformance can be considered on a scale ranging from fully conformal at one end, where the 
system adapts fully to the individual’s strategies and preferences. At the other end, the automation 
neglects any adaptation to the human. In between these extremes, tradeoffs can be found. Before 
considering the individual human, the system could consider humans as a general group. Another 
term for such approaches to automation design is human-centered design.  
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5.1.2 Research on automation conformance 

Personalized automation has been widely researched in the context of self-driving cars. In the 
automobile domain, individual driving styles have been explored to increase the human 
acceptance and comfort of self-driving cars [Kuderer, 2015]. This research presumes that human 
drivers are more likely to trust and accept an autonomous car if the car’s driving style is similar to 
that of the driver. An AI domain that has long explored personalized automation is recommender 
systems [Ricci, 2015]. Personalized algorithms are commonly applied by actors active in electronic 
commerce (e-commerce), such as digital music, books, and streaming entertainment services. By 
collecting data about the individual’s habits in using a particular service, a unique “user profile” 
can be created using personalization algorithms. For digital music services, algorithms can track 
listener activities including the songs and playlists listened to, liked, shared, skipped, and added to 
a library.  

There has not been much research conducted on conformal automation in the context of ATC.  The 
notion of personalized, conformal automation was first raised by the MUFASA project [2013], 
which simulated conformal automation via unrecognisable replays of controllers’ previous 
performance. Results showed that when controllers were given conformal advisories (i.e., 
solutions matching their own), they accepted more advisories, agreed with them more, and 
responded to them faster.  

In the study by Regtuit et al. [2018] a RL agent was developed that could replicate human-like 
CD&R strategies based on ATC ‘best practices’ in simple two-aircraft conflict situations. Although 
the study showed promising results, the personalization of solutions and controller acceptance 
were not considered. A follow-on study by Van Rooijen et al. [2020] aimed to achieve 
personalization by developing an individual prediction model of conflict resolutions based on pixel 
data from interface images of conflict situations captured. That study used a visual representation 
of velocity obstacles, in combination with a tailored Convolutional Neural Network (CNN), to 
predict controller solutions based on observed controller data collected in an ATC simulation. 
Results indicated that controller consistency and the selected (visual) feature(s) in conflict 
resolution play important roles in prediction accuracy. Of particular interest was that the 
personalised ML models performed better than the average group models.  

Another design approach to conformal automation consists of adapting the automation’s behavior 
according to the operator’s cognitive states in real time. This can be achieved by means of the 
automation assessing the operator’s physiological measures from monitoring, for example, heart 
rate, blink rate, fixations, respiration rate, and brain waves, to understand the operator’s cognitive 
state (e.g. stress, workload, attention, fatigue etc) [Parasuraman 2012; Kistan 2018; Arico 2020]. 
Kistan et al [2018] proposed a cognitive human-machine interface (C-HMI) for ATM that adapts 
the information provided and functions available based on an inferred understanding of the 
individual’s cognitive state. In the NINA project (neurometrics indicators for ATM), controller’s 
brain activities (electroencephalogram), heart rate (electrocardiogram), and eyeblink rates 
(electrooculogram) were measured to assess their performance (cognitive resources) and evaluate 
their learning progress in en-route ATC simulations [Borghini, 2014]. Such approaches can be used 
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to improve learning and training efficiency on a personalized level. In [Ohneiser, 2019] eye-tracking 
equipment was used to monitor the controller’s visual behavior to determine if the operator was 
missing potentially important situations. When the operator’s gaze was found to be elsewhere, 
the system drew attention to the situation at hand by highlighting information (visual cues) in the 
interface (e.g. a handover event) in three escalation levels.  

 

5.3 Automation transparency 

This chapter considers transparency as explored in the human factors and cognitive engineering 
domains. While these research communities and the AI communities view and define transparency 
similarly, the human factors and cognitive engineering domains have focused on the end-user’s 
requirements for transparency. The algorithmic and mathematical methods for achieving 
transparency have not been at focus, rather the objective has been to determine what needs to 
be explained (e.g. algorithm, uncertainty, goals), how it should be presented (e.g. in text or 
graphics), and to explore the impact of transparency on acceptance, use, workload, situation 
awareness, trust, performance etc. Section 5.3.1 in this chapter explains the theoretical 
foundations underlying automation transparency. Section 5.3.2 presents two models proposed in 
the literature for designing automation transparency, and some empirical research findings. 
Section 5.3.3 wraps up this chapter with an introduction to the Ecological Interface Design (EID) 
approach. 

5.3.1 Theoretical foundations 

The notion of automation transparency has been researched broadly across many domains, 
including human-computer interaction, human factors, and numerous AI subdomains. Differences 
in the type of automation explored and requirements for understanding that automation has given 
rise to different terms across domains. What is shared between them is that all strive to make 
aspects of the inner workings of the automation ‘black box’ understandable to the human. 
Examples from the human factors and cognitive engineering domains include automation [Westin 
et al., 2016] and agent transparency [Chen et al., 2014], automation visibility [Dorniech et al., 
2017], understandability [Sheridan, 1992], observability [Woods, 1996] and comprehensibility 
[Campbell et al., 2016]. In the AI community, the notion of transparency is mirrored in terms of ML 
interpretability [Murdoch et al., 2019], Explainable AI (XAI) [Gunning, 2017] and intelligibility of 
context-aware systems [Bellotti and Edwards, 2001]. In the AI sub-domain recommender systems 
research, the term transparency is used [Ricci et al., 2015].  

Automation transparency has been defined as: “the ability of the automation to afford 
understanding and predictions about its behavior” [Westin et al., 2016]. In this regard, automation 
transparency is a property of the automation. The human reaction to this property can be assessed 
in terms of understanding and predicting the automation’s behavior. Transparency is a 
multifaceted construct that ultimately is shaped by what is sought to be understood: what the 
human is trying to understand governs what needs to be explained.  
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In the human factors and cognitive engineering domains, two models of agent transparency have 
been proposed for autonomous systems; Lyon’s [2013] model for human-robot teaming approach 
transparency from the requirement of establishing a shared intent and awareness between 
robot/autonomous systems and humans, and Chen et al.’s [Chen et al., 2014] situation awareness-
based agent transparency (SAT) model for human-agent teaming. The SAT model specifies three 
levels of transparency, paralleling the SA levels of perception, comprehension, and predictions. 

 

5.3.2 Research on automation transparency 

Although there is more research into transparency (and related concepts such as XAI) than into 
conformance, no previous research exploring ML approaches to CD&R have considered system 
transparency.  More generally, however (i.e. away from CD&R), experiments have shown that 
automation transparency can benefit humans’ understanding, trust, and acceptance of 
automation, while also improving performance (e.g. [EAAIHLG, 2020]). Consequently, 
transparency has been considered for many different reasons, such as to explain abnormal 
automation behavior [Kim, 2006], why the automation might err [Dzindolet, 2003], the behavior 
of intelligent agents and autonomous robots [Core et al., 2016] [Selkowitz et al., 2015], as an 
indication of the automation’s reliability [Jamieson et al., 2008], and the automation’s proximity 
to its performance envelope [Helldin et al., 2013]. In a literature review on agent transparency, 
Bhaskara et al. [Bhaskara et al., 2020], investigated the effects of transparency on performance, 
response time, subjective workload, situation awareness, trust, and usability. Five studies were 
reviewed, all of which explored military applications and most of which operationalized 
transparency on the SAT model.  

Bhaskara et al. distinguished between four levels of transparency: low (supporting perception in 
terms of basic information or advice), medium (supporting comprehension in terms of adding 
information about the agent’s reasoning), high (supporting prediction in terms of adding 
information on either expected outcome/consequence or added reasoning for a 
recommendation), and very high (supported prediction by adding more information in the high 
transparency level (e.g., both an outcome prediction and uncertainty information). While findings 
show some benefits of increased (levels of) agent transparency to acceptance, trust, situation 
awareness, workload, and response time, Bhaskara et al. noted that results so far are inconclusive 
and that there are simply not enough results to form stable conclusions [Bhaskara et al., 2020]. 

Researchers have explored transparency of intelligent agents (e.g., robots) by providing 
explanations based on the agent's decision-making processes. Frameworks such as the Belief-
Desire-Intention (BDI) [Rao and Georgeff, 1995], Partially Observable Markov Decision Process 
(POMDP) [Wang et al. 2016], and Parallel-rooted, Ordered, Slip-stack Hierarchical (POSH) 
frameworks [Theodorou et al., 2017] have been used for modeling the decision-making processes 
and actions of agents. The framework used to model the mental process of the agent can also be 
used to provide explanations of the agent's behavior. Generalized, all three frameworks model the 
agent’s behavior against three components: goals for which actions are accomplished based on an 
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understanding of the current state. For increasing the user’s understanding of the agent and its 
conduct, transparency of each component can be afforded. In experiments with an agent, built on 
the POMDP framework, explanations of the agent’s inferred state (based on its sensors) and 
associated uncertainty were shown to benefit understanding, trust, mission success, and 
percentage correct decisions made, particularly when the agent’s reliability was low.  

 

5.3.2.1. Early ATC interface designs for transparency 

An important aspect for the success of any transparency measure is the way in which the 
information is communicated. In ATM and many other transportation systems, visual human-
machine interfaces are seen as effective ways to communicate aspects of the work domain to 
human agents. In ATC CD&R, the majority of visual interfaces that have been developed over the 
past decades (e.g., as part of PHARE and Tactical Controller Tools) put the emphasis on portraying 
problematic areas for the air traffic controller to solve. That is, the computer predicts conflicts 
using flight data and expected traffic patterns and indicates conflicts on either the electronic radar 
screen and/or a secondary interface, see figure 5.3. The role of the air traffic controller is then to 
observe the problem and subsequently formulate and implement actions to solve the problem. 

 

Fig. 5.3. Visual interfaces for CD&R. CARD display is a secondary display, showing time- and 
distance-to-CPA of on a 2D axis system, whereas the relative state vector and HIPS are integrated 
on the plan view display. 

The visual representations mainly aim to direct the controller’s attention to conflicts that need to 
be resolved. Besides the HIPS, the CARD and relative state vector assist mainly in conflict detection, 
not necessarily resolution. The HIPS display portrays loss of separation areas on the radar screen 
with “blobs”, which not only indicate the presence of a conflict (when the trajectory intersects the 
blob), but also implicitly hint towards heading solutions that would make any updated trajectory 
pass the blob to either the left or right. 

These visual tools have been tested successfully in ATC evaluation studies, and some of them (e.g., 
CARD) are even integrated in the standard tool set in ATC centers. Despite their success, controllers 
also indicated room for improvements. For example, the avoidance zones in HIPS did not always 
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correctly represent the controller’s perception of the nature and severity of the problems. 
Sometimes there could be inconsistencies between the conflict detection algorithms and the 
problem-solver tool, resulting in ambiguous information causing controller distrust. 

 

5.3.3 Ecological Interface Design 

Ecological Interface Design (EID) is a design framework that originated from the process control 
domain. The goal of the EID framework is to create interface representations that reveal the deep 
structure (e.g., physical relationships) of a control problem in meaningful ways for operators to 
“chunk” information, reducing the demands on memory and supporting productive thinking (e.g., 
through direct manipulation, metaphorical design, clever geometrical shapes, etc.). Different from 
user- and technology-centered design, EID is founded on the starting point that humans are 
creative problem solvers who can adapt to novel situations, or, work domain states. 

In processes governed by the laws of physics, such as air transportation, creative solutions and 
actions are limited and bounded. For example, an aircraft cannot sustain flight when it is flying 
slower than the stall speed. The turn radius of an aircraft is constrained by the maximum allowable 
load factor to maintain structural integrity. Besides these ‘internal’ aircraft constraints, the 
maneuverability of aircraft is also affected by ‘external’ static and dynamic environmental (i.e., 
ecological) constraints such as other air traffic and weather. These physical boundaries define the 
line between safe and unsafe actions that result in accidents as shown in Figure 5.4. Besides the 
physical boundaries, there are also intentional boundaries that add safety margins on actions. For 
example, in aviation the horizontal separation standard between aircraft is 5 nautical miles, which 
is obviously larger than the physical dimensions of any aircraft. Violating the intentional boundary 
will then lead to an incident. Additionally, actions may be further restricted by automation that, 
for example, only support one (or a small range of) optimal action(s). 
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Fig 5.4. Ecological Interface Design as a constraint-based approach to interface design, which aims 
to support any action that lies within the space of possibilities bounded by physical laws and work 
domain principles.  

In EID, the design emphasis is put on modeling and visualizing all constraints on actions onto a 
visual interface such that operators can literally perceive the ‘space of (action) possibilities.’ Doing 
so can help the operator decide when and by how much to deviate from standard operations and 
evaluate the consequences of crossing certain boundaries. The design challenge is then how to 
map the constraints onto a visual display in a way that supports productive thinking. Here, 
principles of user- and technology-centered design can be helpful in guiding both modeling (e.g., 
predicting the range of future vehicle states based on the equations of motion) and mapping (e.g., 
maintaining visual momentum, adhering to the Proximity Compatibility Principle and choosing the 
right reference frame for projection). Thus, EID is not meant to replace those design approaches, 
but rather complement them by changing the focal point of design, which is geared towards letting 
users “finish the design” in terms of helping them navigate through the space of possibilities in 
their own preferred way, whilst being aware of the boundaries on actions. 

So far, EID has been successfully applied in many application domains, including aviation. In ATC, 
“solution space” concepts have been designed for supporting perturbation management in state-
based and 4D trajectory-based operational environments, see figure 5.5. Similar to other ATC 
interfaces, such as the HIPS display, the solution space concept requires the human operator to 
take action. Thus, the computer integrates information related to flight performances, traffic 
patterns and environmental conditions (e.g., no-fly zones, weather cells, etc.) to calculate and 
portray both solution and problem areas, but does not suggest any specific action to undertake. 
That also means that users could still decide to implement suboptimal solutions that are safe (i.e., 
circumventing the problem areas within the boundary of the feasible envelope), but are also 
regarded suboptimal from an efficiency perspective. 

  

Fig 5.5. State-based solution space, showing all speed and heading options within the speed 
envelope of the selected aircraft that resolve the conflict (red triangle, based on 5NM protected 
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zone). The trajectory-based solution space shows safe (green) and unsafe (red) waypoint locations 
within the flight performance envelope that ensure the aircraft will reach the sector exit at its 
desired exit time in case a re-route is needed. Extensions of these visualizations in altitude have 
been developed as well. 

5.4. Implications for MAHALO 

Review confirmed that Conformance and Transparency remain two critical concepts to explore in 
ML based advisory automation. Conformance can be seen on a continuum from specific 
(personalised) to normative (group) tuning. This is an important lesson for MAHALO, since we 
intend to experimentally manipulate conformance. We also acknowledge the role of conformance 
in automation trust, acceptance, and reliance, and this view seems to have gained some popularity 
over the last five years. Finally, in experimentally manipulating level of conformance, MAHALO 
simulations can consider use of adaptive measures, such as physiological triggers (Arico, 2020; 
Kistan, 2018] for level-of-conformance manipulation. 

Review also confirmed that the concept of transparency is growing in relevance and research 
focus, in the age of ML. It also is clearly seen as a multi-faceted concept, and is being modeled in 
different ways [Lyon, 2013; Chen, 2014]. Finally, we are encouraged in our preliminary view that 
the ecological interface design (EID) approach can enhance human-machine cooperation with a 
hybrid ML advisory system. 
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6. Conclusions 

The goals of the MAHALO project are ambitious: to build a functioning hybrid ML CD&R system, 
and to evaluate the impact of this system via human-in-the-loop trials. The main aim of this SOAR 
was to review the latest theoretical and empirical evidence on ML methods, known impacts on 
human performance, and their intersection with ATM. In the process, concrete lessons have 
emerged. 

 

6.1 Lessons learnt 

First, our candidate ML approaches and methods fit with the current state-of-the-art. Given the 
pace of progress especially in ML research, this is encouraging.  

Second, our original aim to create a hybrid ML approach seems, after review, to fit well with a 
model that distinguishes conflict detection (CD) and conflict resolution (CR) functions.  

Third, a combination of SL and RL approaches seems to fit the CD and CR functions especially 
well.  

 

6.2  Next steps 

Additionally, review has begun (the process is ongoing) to identify the ‘rules of the road’ control 
strategies that must be captured in the RL module for CR.   

Finally, review has begun to narrow our focus on specific methods within the broader ML 
approaches (i.e., SL and RL). 

During the review, some effort has been dedicated to understand what results coming from past 
EU-funded projects way be relevant for our project. In the MAHALO original technical proposal, 
we identified several projects that would play foundational parts in refining the theory and 
methods of this project. Among these were five SESAR projects, under either the WP-E or ER1 
umbrella. These five were rated medium or high in terms of their impact on MAHALO. Table 6.1 
below shows how we intend to draw upon these five projects. 
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Project Specific contribution to MAHALO 

MUFASA  Operationalising conformance 

 Refining ConOps and test scenarios 

 Automation acceptance / trust framework 

 Data collection subjective methods 

 Experimental design 

 Advisory alert issues (tweaking timing, logic, etc) 

C-SHARE  Ecological UI design 

 Designs for transparency 

 Advisory / alerting logic 

 Experimental design 

TERRA  Candidate SL methods for CD 

 Synthetic traffic generation methods 

 Data requirements for SL models 

 Offline and online post-hoc analysis methods 

 RL for safety modelling (data requirements, analysis methods) 

STRESS  Off-nominal mode analysis 

 Human performance assessment methods 

NINA  Neuro-ergonomic indicators 

 Adaptive triggering mechanisms and design issues 

 ConOps and scenario design guidance 

 Experimental design guidance. 

Table 6.1  Specific contributions of five  SESAR projects to MAHALO. 

 

6.3  Addressing the original research questions 

Section 1.2.3.1 laid out the following eight broad questions, which the SOAR sought to address: 

ML issues: 

1. Broadly speaking, how should we model the CD&R process? 

2. Which candidate ML approaches seem most promising for modelling CD&R? 

3. What main challenges exist in the use of ML methods, and how can we counter these? 

Human and system impacts: 

4. Do transparency and conformance constructs still seem critical, and how feasible are they to 
experimentally explore? 
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5. How can transparency be operationalised in simulation trials? 

6. How can conformance be operationalised in simulation trials? 

7. How do we assess other aspects of human performance, including trust, acceptance, and 
workload?  

Interface issues: 

8. How should we address display issues to convey transparency and conformance? 

 

6.3.1 ML issues (research questions 1-3) 

Figuring out which type of ML algorithm should be used for the CD and CR tasks is a non-trivial 
task. On the basis of literature review, we confirmed that our preliminary view that the two 
functions can be separated, is feasible and preferable. The CD&R process will likely be modelled 
as two separate tasks, a classification task for CD, and an optimization task for CR, with CD output 
driving CR function input. 

The specific approach (i.e. model architecture) will be chosen over the course of task 2.3 (Concept 
and scenario definition). From the literature review it became clear that SL has an edge over RL 
when it comes to the task of CD, this is due to SL’s great strength at detecting patterns in data 
when trained from labelled data. SL has been used in CD tasks, but its performance has not always 
been very high (80%). For this reason, we will continue to explore candidate CD architectures over 
the coming months. CD candidates approaches include SL, algorithmic approach, and ganged 
(sequential) combinations of architectures. For the CR task, current thinking is that an RL-based 
model will be used, in which the agent will optimize based on both flight path deviation (or 
additional miles flow, fuel consumed, less is better approach) and conformance to ATCO 
demonstrations  

For both CD and CR, several challenges were identified (as summarised in chapter 4.4). Chief 
among these is the requirement of ML to have access to large data sets. One solution to this issue 
is adapting the methods of vsn Rooijen et al [2020], in which human-in-the-loop data seeded 
creation of synthetic traffic, via the introduction of stochastic noise. This and other challenges will 
be discussed more fuller in deliverable 2.2, but thus far, literature review has encouraged us that 
our general ML approach seems feasible and potentially valuable. 

 

6.3.2. Human – system impacts (research questions 4-7) 

Review of the literature on conformance and transparency, led to the conclusion that they remain 
as critical as ever, in the emerging age of machine learning.  The two concepts seem to play 
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different roles in enhancing human-machine interaction. Conformance seems a means to foster 
initial acceptance and trust, and transparency seems a means to expand the human’s 
understanding.  As shown in figure 6.1 (based on figure 1.1), a novice might initially work with a 
conformal transparent system (in the lower right cell). Learning, in effect, can be operationalised 
as moving the operator from the bottom right to the top right cell—that is, moving the operator 
into an initially non-conformal way of working, that is hopefully more optimal. Teaching is, after 
all, making the unfamiliar familiar. 

 

Figure 6.1 Learning in a human-machine system.  

In terms of operationalising conformance, we are encouraged to use the distinction between 
individual and group tuning (van Rooijen, 2020), and also to explore adaptive triggering of 
conformance level. Conformance is intended to be a naturally-occurring, non-manipulated 
variable. Earlier research using “Wizard of Oz” techniques simulated conformance by using 
replaying self- or other generated solutions. Part of the aim is to assess the performance of 
automation using a non-manipulative approach. An ATCO’s conformance rating for a given ML 
solution defines the conformance level of that solution for that controller. 

On a related point, MAHALO requires that the CD&R system be able to determine if a resolution, 
derived by the system, is conformal to the individual controller or not. If the solution is determined 
to be non-conformal, the system should provide an explanation to the individual controller as to 
why the system believes the solution to be non-conformal and why the proposed solution is 
considered better. This is considerably more complicated than to provide an explanation for why 
a particular solution is chosen, which does not require an assessment of the individual’s 
preferences. The system must be able to: 

● Derive a best solution, 

● Determine the controller’s preference s for CD&R, 

● Compare the derived solution with the solution preferred by the controller, 

● Determine if the derived solution is non-conformal (i.e. differs from the solution preferred by 
the controller), 

● Explain to the controller why the system considers the derived solution to be ‘better’ than the 
controller’s preferred solution. 
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Transparency will be operationalised as explainability along two dimensions: 

● How the ML system arrived at a particular solution (i.e., process and relationship between 
input and output), and  

● Why the ML system has derived that a particular conflict resolution matches the 
individual’s preferences (i.e., why it is strategic conformal). 

The concepts of transparency and conformance are partly at odds. Both automation transparency 
and conformance can foster human understanding and acceptance of automation advisories. The 
literature, however, indicates that the two constructs achieve this objective in different ways.    

Strategic conformance fosters acceptance based on how similar the system’s strategy or solution 
(i.e., output) is with the human’s preferred solution. Since the conformance of a system is judged 
based on its apparent behavior, the human will have difficulties understanding in detail what the 
system does when solving a problem, how it solves a particular problem, and why a particular 
solution is chosen. If an ML system proposes a solution in line with the controller’s strategy, the 
human may assume that the system will use a similar method as the human and apply a similar 
underlying strategy. In an ATC CD&R task, the strategic conformance of the ML system can relate 
to the conflicts detected by the system or the conflict resolutions proposed by the system.  

In contrast, automation transparency strives to explain aspects of the automation’s underlying 
reasoning and decision-making process, including for example how the automation perceives the 
environment and problem, the algorithm (i.e. method) used for addressing the problem, how a 
specific solution (i.e prediction) was derived based on the input, or the goals pursued for finding a 
solution. As such, automation transparency fosters acceptance by providing an explanation for 
what the system does when solving a problem (e.g., explain the ML model or automation 
algorithm), how the automation will solve the specific problem (e.g., explain the relationship 
between input and output), and why this particular solution is chosen (e.g., because the following 
factors are considered/weighed most important for determining the output: a, b, x, and z).  

The benefits of transparency might only emerge when automation offers a solution different from 
that of the human (i.e., non-conformal). An important challenge to solve is then for automation to 
determine if a proposed solution differs from the human, or else an explanation may not be 
relevant. This is perhaps where conformance becomes most valuable. Previous literature has 
explored physiological measures of the operator’s individual state [Parasuraman 2012; Kistan 
2018; Arico 2020; [Borghini, 2014; Ohneiser, 2019] as an input to automation for adapting its 
behavior. Similarly, by deriving understanding of an operator’s preferred strategy or solution type, 
automation could determine if the solution it finds most optimal differs from that of the individual, 
which would warrant an explanation. By knowing the individual’s solution preferences, the system 
will be in a better position to afford transparency and explain its reasoning for recommending 
another (non-conformal) solution. The system will be able to provide an argument for why the 
proposed solution is better than that of the individual. 
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6.3.3. Interface issues (research question 8) 

ATM tools have thus far focused more on supporting CD than CR. Systems like TCAS or short-term 
conflict alert can automate CD, but this far we have been reluctant to automate the CR process. 
Conflict resolution is left entirely in the hands of the controller. Although this may be desired from 
a controller’s perspective, differences in controller’s “satisficing” strategies could counteract the 
efficiency targets set for the future ATM system. However, increasing the level of automation 
involvement at the levels of making control decisions and implementing actions has not been 
embraced by the ATC community amongst controllers. It seems that when automation starts to 
mingle in taken actions, for example by suggesting single optimized solutions, controllers reject 
such computer-based advice as they cannot always understand why and how the computer arrived 
at that solution. 

In MAHALO, it will thus be important to design visual representations that would allow controllers 
to not only perceive problem areas, but also the complete set of solutions with additional 
information on why a computer would prefer one particular solution over all other possible 
solutions within the space of possibilities. Designing visual representations guided by the 
Ecological Interface Design (EID) paradigm could potentially address this issue.   

6.4  Final wrap-up 

Again, the goals of MAHALO project are ambitious: to build high-performance hybrid ML CD&R 
automation, and to evaluate the human-machine system impacts of this automation via real time 
simulations. In the process, we have set up the potential for competing goals: If forced, would we 
sacrifice system performance to accomplish human-machine testing? Do we compromise testing 
to maximise system performance?   

First, we aim to build a hybrid CD / CR system, that is fundamental to the MAHALO vision, and 
literature review revealed nothing to discourage that view.  

Second, we aim to develop as high performance a system as possible. Review revealed that Sl 
might not be up to standards for this CD function. For this reason, we will continue to explore (in 
Task 2.3) specific architectures that can be sued for the CD function.   

Third, we want to pursue the development of (perhaps among others) SL methods for this CD 
function. Part of the aim here would be to refined and extend previous work into six different SL 
methods for CD&R, which this SOAR revealed.  

The next report in our series, D2.3, will present how successful the MAHALO team was in refining 
these methods. 
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