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Abstract— Artificial intelligence is considered a key enabler for 
realizing a more efficient future air traffic management system. As 
the automation designed to support us grows more sophisticated 
and complex, our understanding of it tends to suffer. Recent 
research has addressed this issue in two ways: either through 
increased automation transparency or increased personalization. 
This paper overviews recent work in these two areas of strategic 
conformance (i.e., personalization) and automation transparency 
(e.g., explainable artificial intelligence and machine learning 
interpretability). We discuss how to achieve and how to balance 
conformance and transparency in the context of a machine 
learning system for conflict detection and resolution in air traffic 
control. In the MAHALO project, we aim to build, and empirically 
evaluate, a personalized and transparent decision support system 
by combining supervised and reinforcement learning approaches. 
We believe that such a system could strive for optimal 
performance while accommodating individual differences. By 
knowing the individual’s preferences, the system would be able to 
afford transparency by explaining both why it suggests another 
solution (that deviates from the individual’s), and why this 
solution is considered to be better.   
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I. INTRODUCTION 
Despite the recent downturn and turmoil in the economy and 

airline industry, traffic forecasts retain expectations of an 
increase in traffic in the medium and long term. For continued 
development and growth, the Air Traffic Management (ATM) 
industry depends on new technology and increasingly 
sophisticated automation [1]. Of particular interest are the 
possibilities and promises of artificial intelligence (AI) [2]. 
Machine Learning (ML) technologies offer enhanced 
performance, efficiency, and utilization of human resources 
through a system design that can sense, learn, and act 
autonomously. AI solutions for ATM have also started to 
emerge, such as using ML and big data techniques to improve 
the accuracy in trajectory prediction [3] [4], to identify novel 
route patterns and predict airlines’ route selection [5], and for 
speech recognition in air traffic controller (ATCo)-pilot 
communication [6]. Moreover, ML solutions appear particularly 
suitable for the task of conflict detection and resolution 

(CD&R), assuming much of the ATCo’s cognitive work 
involved in overseeing, separating, and expediting air traffic. 
For conflict resolution, Pham et al. [7] recently presented an AI 
agent able to resolve over 81% of all conflicts in high 
uncertainty and high traffic scenarios.  

As automation grows increasingly capable of performing the 
deeper, “thinking” parts of many jobs, it is essential to consider 
how to facilitate operators’ trust and acceptance of the 
automation. Unlike traditional AI methods, ML does not rely on 
explicitly programmed algorithms. Rather than the old ‘if then’ 
rules of traditional expert systems, ML rests on models that can 
self-organize, learn, and improve performance (e.g. 
classification) over time. ML approaches generally have the 
implicit benefit of graceful degradation (unlike traditional expert 
systems that might crash spectacularly). The flip side of such 
graceful degradation, however, is that the output of ML 
algorithms can be unintuitive and difficult to interpret.  
Ironically, ML methods (e.g., ‘deep learning’ neural network 
extensions) that show the best learning performance, tend to be 
‘opaque’ and the most challenging to understand [8]. Several 
human factors constructs have explored the breakdown in 
human understanding of automation, including automation 
surprise [9] [10], out-of-the-loop [11], and loss of situation 
awareness [12].  

Research has addressed understanding issues of automation 
in two different ways: either through increased transparency or 
increased personalization. For the human operator to retain 
authority, the system must be able to afford transparency and 
explain its reasoning and behavior. An alternative approach may 
be to develop automation that conforms to humans, and even the 
individual’s, problem-solving strategies and preferences. This 
paper asks two simple but profound questions: in the emerging 
age of ML, 1) to what extent should we design automation to 
match individual human behavior (i.e., strategic conformal), and 
2) to what extent should the automation be made transparent? 
Answering these questions is important for guiding the design 
of future ML systems in ATM and other safety-critical domains.  

In relation to ongoing work in the European Horizon 2020 
[13] funded Modern ATM via Human/Automation Learning 
Optimization (MAHALO) project, we discuss how to achieve 
and how to balance conformance and transparency in the context 
of a ML system for ATM CD&R. This paper provides an 
overview of recent work in the areas of strategic conformance 
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and automation transparency. A theoretical framework is 
presented for discussing the balance of conformance and 
transparency of automation. Finally, the hybrid ML approach 
explored in the MAHALO is introduced, where the objective is 
to not only demonstrate a ML CD&R capability but to create an 
empirically derived framework and guidelines for how to 
develop advanced future AI, specifically for ATM. 

II. THEORETICAL CONSTRUCTS 
Human understanding of automation grows more 

challenging as automation becomes increasingly complex. In 
attempts to support understanding of automation, research has 
explored two seemingly opposing constructs of automation 
transparency and strategic conformance. Fig. 1 illustrates the 
relationship between the three constructs of conformance, 
transparency, and understanding.  

● Conformance—the apparent strategy match between 
human and machine solutions. This similarity is external, 
overt, and observable, and is the extent to which cause 
and effect can be observed. 

● Transparency— the extent to which aspects of the 
automation’s inner process underlying a solution can be 
explained in human terms. 

● Understanding – the extent to which the human 
understands the automation’s reasoning underlying the 
solution. To make the system understandable to humans, 
we need to align its explanations to aspects that are of 
relevance to human decision-making. 

A. Automation Transparency 
The notion of automation transparency has been researched 

broadly across many domains, including human-computer 
interaction, human factors, and numerous AI subdomains. 
Differences in the type of automation explored and requirements 
for understanding that automation has given rise to different 
terms across domains. Examples from the human factors and 
cognitive engineering domains include automation [14] and 
agent transparency [15], automation visibility [16], 
understandability [17], observability [18], and 
comprehensibility [19].  In the AI community, the notion of 
transparency is captured in terms of ML interpretability [20], 
Explainable AI (XAI) [8], and intelligibility of context-aware 
systems [21]. These concepts all strive to make aspects of the 
inner workings of the automation ‘black box’ understandable to 
the human. Transparency has also been advocated as a 
requirement of automation by politicians and legislators, such as 
the EU general data protection regulation that contains a 
controversial ‘right to an explanation’ criterion [22]. 

Automation transparency has been defined as: “the ability of 
the automation to afford understanding and predictions about 
its behavior” ([14] p. 202). In this regard, automation 
transparency is a property of the automation. The human 
reaction to this property can be assessed in terms of 
understanding and predicting the automation’s behavior. 
Transparency is a multifaceted construct that ultimately is 
shaped by what is sought to be understood: what the human is 
trying to understand governs what needs to be explained. 

Consequently, transparency has been considered for many 
different reasons, such as to explain abnormal automation 
behavior [23], why the automation might err [24], the behavior 
of intelligent agents and autonomous robots [25] [26], as an 
indication of the automation’s reliability [27], and the 
automation’s proximity to its performance envelope [28].  

Two models of agent transparency have been proposed for 
autonomous systems; Lyon’s [29] model for human-robot 
teaming approach transparency from the requirement of 
establishing a shared intent and awareness between 
robot/autonomous systems and humans, and Chen et al.’s [15] 
situation awareness-based agent transparency (SAT) model for 
human-agent teaming. The SAT model specifies three levels of 
transparency, paralleling the SA levels of perception, 
comprehension, and predictions. In a literature review on agent 
transparency, Bhaskara et al. [30], investigated the effects of 
transparency on performance, response time, subjective 
workload, situation awareness, trust, and usability. Five studies 
were reviewed, all of which explored military applications and 
most of which operationalized transparency on the SAT model. 
Bhaskara et al. distinguished between four levels of 
transparency: low (supporting perception in terms of basic 
information or advice), medium (supporting comprehension in 
terms of adding information about the agent’s reasoning), high 
(supporting prediction in terms of adding information on either 
expected outcome/consequence or added reasoning for a 
recommendation), and very high (supported prediction by 
adding more information in the high transparency level (e.g., 
both an outcome prediction and uncertainty information). While 
findings show some benefits of increased (levels of) agent 
transparency to acceptance, trust, situation awareness, 
workload, and response time, Bhaskara et al. note that results so 
far are inconclusive and that there are simply not enough results 
to form stable conclusions [30]. 

Researchers have explored transparency of intelligent agents 
(e.g., robots) by providing explanations based on the agent's 
decision-making processes. Frameworks such as the Belief-
Desire-Intention (BDI) [31], Partially Observable Markov 
Decision Process (POMDP) [32], and Parallel-rooted, Ordered, 
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Slip-stack Hierarchical (POSH) frameworks [33] have been 
used for modeling the decision-making processes and actions of 
agents. The framework used to model the mental process of the 
agent can also be used to provide explanations of the agent's 
behavior. Generalized, all three frameworks model the agent’s 
behavior against three components: goals for which actions are 
accomplished based on an understanding of the current state. 
For increasing the user’s understanding of the agent and its 
conduct, transparency of each component can be afforded. In 
experiments with an agent, built on the POMDP framework, 
explanations of the agent’s inferred state (based on its sensors) 
and associated uncertainty were shown to benefit understanding, 
trust, mission success, and percentage correct decisions made, 
particularly when the agent’s reliability was low. Noteworthy is 
that research within this domain has not explored AI algorithms 
for providing explanations. 

B. Explainable and Interpretable AI 
In the context of AI and ML systems, transparency becomes 

intrinsically difficult to achieve due to the amount of data 
processed and complexity of the systems (e.g., multiple deep 
layers, number of rules) that greatly exceed human abilities to 
timely make sense of the data. Echoing transparency, ML 
interpretability has been defined as the “ability to explain or to 
present in understandable terms to a human” ([34] p. 2).        

In the field of interpretable ML, Guidotti et al. [35] found 
that graphical decision tree representations and textual decision 
rules (i.e., ‘if-then’) are among the most commonly used 
methods for explaining both the ML model (i.e., global 
explanation) and its specific output (i.e., local explanation) [35]. 
The output of linear models is often explained by highlighting 
key input parameters and their relative importance. Similarly, 
explanations of deep neural networks (DNNs) used for image 
recognition often make use of either saliency mask, which 
visualizes key areas/features in the input image, or activation 
maximization, which determines key neurons in certain layers 
activated by the input image. Example methods in image 
classification using convolutional neural networks (CNNs) are 
the Pixel-Wise Decomposition (PWD), which uses heatmaps to 
visualize individual pixels of the input image that determine the 
output [36], and the Visual Back Prop (VBP) method, which 
uses masks to visualize the set of pixels in the input image that 
determine the output [37]. 

Other recent developments include, for example, Local 
Interpretable Model-Agnostic Explanations (LIME) [38], 
Contextual Explanation Networks [39], and Contextual 
Decomposition [40]. However, some have been shown to be 
unstable (i.e., LIME) by providing different explanations for 
similar inputs that prevent their use in high stake domains [41]. 
Contextual Explanation Networks is an interesting approach to 
XAI that combines ML methods and probabilistic models [39]. 
Contextual Explanation Networks processes a subset of input 
features and generates parameters for a sparse linear model 
which can be assessed by domain experts. Subsequently, the 
generated model is applied to another subset of inputs and 
produces a prediction [39]. According to the developers is this 
approach robust and a candidate for high stake domains. 
Contextual Decomposition [40] provides explanations by 
decomposing the Long short-term memory (LSTM) output. 

Although primarily used for natural language processing, this 
approach should be able to provide importance scores for 
individual features and feature interactions also for other LSTM-
based models and domains such as aviation. Moreover, reward 
decomposition approaches have been used to explain decisions, 
in particular action selection, of Reinforcement Learning (RL) 
agents [42].  

Despite the amount of research on interpretability, there is a 
shortage of empirical research exploring the effects of 
transparency on acceptance and trust [32]. Research on 
transparency in the AI domains has been criticized for focusing 
primarily on how to build explanations while neglecting the 
underlying psychology and human interpretation of them [43]. 

C. Personalised Automation and Strategic Conformance 
Automation is typically developed to optimize the 

performance of a task or solution to a problem, beyond that of 
human capabilities and preferences. In contrast, humans tend to 
apply heuristics that satisfice rather than optimize performance 
[44][45]. Westin et al. [46] argued that in contexts where 
humans and automation are expected to work together, the 
divergence in decision-making processes can negatively affect 
human acceptance and trust of the automation. Thereto, 
researchers have advocated automation that can adapt to an 
individual’s needs and preferences [46] [47][48][49]. In the 
automobile domain, for instance, individual driving styles have 
been explored to increase the human acceptance and comfort of 
self-driving cars [50]. 

While AI systems are often designed with little regard to 
individual preferences and needs, they have the ability to adapt 
to the individual by selectively processing data. Ideally, the best 
way for achieving acceptance and trust may be to combine the 
strengths of a generalized AI model with that of a personalized 
AI model. Such a system could strive for optimal performance 
while accommodating individual differences. Moreover, by 
knowing the individual’s preferences, the system would be able 
to afford transparency by explaining both why it suggests 
another solution (that deviates from the individual’s), and why 
this solution is considered to be better. 

The term strategic conformance was introduced to describe 
the match between human and automation solutions [46]. The 
concept of strategic conformance took inspiration from the 
concept of cognitive tools proposed in the European 
Commission sponsored “Role of the Human in the Evolution of 
ATM” (RHEA) project and later explored in the Conflict 
Resolution Assistant (CORA) project [51]. Hilburn et al. [52] 
demonstrated in the MUFASA project that strategic 
conformance can play a critical role in fostering acceptance and 
trust in an advanced ATM CD&R decision support system. 
ATCos’ acceptance of, and agreement with, tactical CD&R 
automation both benefitted when solutions appeared to match 
the underlying strategies of the individual controller. However, 
the MUFASA project did not actually build a conformal system. 
Instead, conformance was achieved by replaying participants’ 
previously captured (i.e., recorded) solutions and present them 
as the decision aid’s recommended solutions. Since then, 
research has explored ways in which conformal systems can be 
designed to support ATCos on CD&R. 



For example, in the study by Regtuit et al. [53] a RL agent 
was developed that could replicate human-like CD&R strategies 
based on ATC ‘best practices’ in simple two-aircraft conflict 
situations. Although the study showed promising results, the 
personalization of solutions and controller acceptance were not 
considered. A follow-on study by Van Rooijen et al. [54] aimed 
to achieve personalization by developing an individual 
prediction model of conflict resolutions based on pixel data of 
conflict situations. That study used a visual representation of 
velocity obstacles, in combination with a tailored Convolutional 
Neural Network (CNN), to predict controller solutions based on 
observed controller data collected in an ATC simulation. Results 
indicated that controller consistency and the selected (visual) 
feature(s) in conflict resolution play important roles in 
prediction accuracy.    

III. BALANCING CONFORMANCE AND TRANSPARENCY 
The concepts of strategic conformance and automation 

transparency are partly at odds. Achieving the potential of AI 
decision aids implies solutions different from those preferred by 
the human, i.e., in a nonconformal way. Transparency is 
therefore envisioned to be most beneficial in situations where 
there is a mismatch between the human and automation solution. 
In such instances, transparency may be essential for affording an 
understanding of automation behavior and reasoning, which 
drives acceptance and trust in the system.  

Results from the MUFASA project, however, suggest that 
transparency may not be needed if acceptance and trust can be 
achieved by developing automation that solves problems using 
strategies conformal to the operator. Based on the apparent 
conformance of solutions, the human is likely to infer that the 
reasoning underlying the automation’s proposed solutions was 
derived in a similar way to that of the human. But what is the 
benefit of having automation producing human solutions?  

First, conformal automation can be particularly beneficial 
for fostering acceptance and trust in automation during the initial 
introduction phase [46]. Second, automation would be able to 
provide conformal solutions faster and more reliably than a 
human. Third, and most important, by knowing individual 
solution preferences, the system will be in a better position to 
afford transparency and explain its reasoning for recommending 
another (nonconformal) solution. The system will be able to 
provide an argument for why the proposed solution is better than 
that of the individual.  

Given recent growth in ML methods and theory, the issues 
of conformance and transparency have taken on enormous 
urgency, and have given rise to three fundamental questions (Q). 
To what extent does automation allow us to understand:  

Q1. What it will do?  

Q2. How it will do it?  

Q3. Why it will do it in a certain way? 

While strategic conformance and transparency can support 
understanding of all three questions, they do so in different 
ways. Strategic conformance is hypothesized to foster 
acceptance based on how similar the system’s solution (i.e., 
output) is with the human’s preferred solution. Since the 

conformance of a system is judged based on its apparent 
behavior, the human will have difficulties knowing what the 
system does when solving a problem (Q1), how it solves a 
particular problem (Q2), and why a particular 
behavior/output/solution is chosen (Q3). If an ML system 
proposes a solution in line with the controller’s strategy, the 
human may assume that the system will use a similar method (Q 
1 and Q2) as the human and apply a similar underlying strategy 
(Q3). In an ATC CD&R task, the strategic conformance of the 
ML system can relate to the conflicts detected by the system or 
the conflict resolutions proposed by the system. Automation 
transparency, however, strives to explain to the ATCo how the 
automation will solve the problem and why. In a CD&R task, 
ML system transparency relates to the system’s underlying 
reasoning when detecting conflicts or determining the most 
optimal conflict resolution.  

Automation transparency is hypothesized to foster 
acceptance by providing an explanation for what the system 
does when solving a problem (e.g., explain the ML model or 
automation algorithm; Q1), how the automation will solve the 
specific problem (e.g., explain the relationship between input 
and output; Q2), and why this particular solution is chosen (e.g., 
because the following factors are considered/weighed most 
important for determining the output: a, b, x, and z; Q3).  

Automation conformance and transparency can vary 
independently as shown in Table I. This can lead, at the extreme, 
to one of four outcomes. The impact of these four outcomes on 
human/system performance can vary with contextual factors, 
such as task complexity, time pressure, etc. For example, time 
pressure can change the tendency to accept automation output.  

If both conformance and transparency are low, the human is 
likely to find it challenging to understand the automation. In 
reaction, the human perceives the automation to be stupid, 
weird, or even malfunctioning. Although the automation’s 
solution may be optimal (given certain criteria) for the problem 
at hand, the human may reject it. Moreover, the human will be 
at greater risk of automation surprise, becoming out-of-the-loop, 
and losing situation awareness. If conformance instead is high, 
while transparency remains low, the human may perceive the 
automation to do the ‘right thing’ but be confused as to why. The 
solution derived by the automation, although similar to that of 
the human, can be achieved using very different methods (e.g., 
ML methods or human heuristic reasoning). 

 

TABLE I.  AUTOMATION CONFORMANCE AND TRANSPARENCY MATRIX 
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 Stupid automation: 

“It’s doing a strange thing, and 
I don’t understand why…” 

Peculiar automation: 

“It’s doing a strange thing, but 
I understand why…” 

H
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Confusing automation: 

 “It’s doing the right thing, but 
I don’t understand why…” 

Perfect automation: 

“It’s doing the right thing, and 
I understand why…” 

 



In situations when transparency is high and conformance 
low, the human may instead find the automation peculiar or 
interesting despite its strange behavior. This is perhaps the most 
interesting interaction between conformance and transparency 
as it reflects systems that surpass human performance while 
accommodating understanding of what the system is doing, 
how, and why. Assuming that automation is most beneficial 
when able to solve problems in ways exceeding human 
capabilities (e.g., considering big data), it will be intrinsically 
nonconformal and challenging for the human to understand. By 
affording transparency, however, the automation can provide 
explanations that foster acceptance, understanding, and 
potentially educate humans towards more optimal solutions. 
Finally, the human is likely to perceive the automation to be 
’perfect’ if it provides a conformal solution that also is explained 
(provided the automation derives the solution differently). 
Contrary to the description, however, the solution in itself may 
not be perfect or optimal to the problem at hand. As such, perfect 
automation may not advance performance beyond that of human 
control alone.   

IV. MAHALO ML APPROACH TO CD&R 
MAHALO is a European Union Horizon 2020 research 

project that aims to develop a prototype ML CD&R system, 
coupled to an enhanced Ecological User Interface (E-UI). 
MAHALO proposes to develop an ML system that learns from 
the individual ATCo, but also provides insight into what the 
system is learning. Simulations will be conducted to empirically 
explore the impact and balance between ML conformance and 
ML transparency on ATCos’ trust, acceptance, system 
understanding, and performance. Supervised Learning (SL) 
techniques will be explored to analyze controller data and 
develop generic (“one-size-fits-all”) and individualized 
prediction models (high conformance). RL will be used to derive 
more optimized solutions (low conformance). The challenge 
here is to discover the “features” that capture the breadth of 
human decision-making in the dynamic CD&R task. Any form 
of automation, whether based on AI techniques or a set of 
standardized rules and logic, tends to be designed as a “black 
box.” In MAHALO, the outputs of the ML models will be made 
transparent and explainable by adopting the Ecological Interface 
Design (EID) framework. 

A. ML Approaches  
Many ML methods make use of Artificial Neural Networks 

(ANNs, or just ‘neural nets’), which are often said to mimic the 
functioning of the human brain. ANNs consist of a group of 
nodes or neurons, each of which is a simple processor that can 
operate in parallel. A mapping from input to output space is 
created and strengthened by modifying connection weights 
(either positive or negative) between neurons, and connection 
weights are generally represented as a matrix. The principle 
underlying the behavior of these neurons is that knowledge can 
be represented through the cooperation of relatively simple 
neurons, with each one comparing a threshold value to the sum 
of weighted inputs and producing in response a nonlinear output. 
At the most basic level, an ANN simply sums the weighted 
(excitation or inhibition) activations from inputs. This net 

summed activation is then passed through a nonlinear activation 
function over the net input.  

Neural network modeling has progressed over the last few 
decades for example through the introduction of multiple (deep) 
hidden layers (DNNs with intermediate neuron layers that 
combine weighted inputs to produce output via an activation 
function, thereby allowing the network to solve the XOR 
problem), non-binary methods for weight adaptation 
(specifically, the least mean squares approach), and relaxation 
algorithms for pacing error correction steps. The most common 
and simple current-day architecture incorporates feed-forward, 
backpropagation, and hidden layers. Recent architectural 
refinements to the neural network approach include CNN (for 
enhanced pattern recognition), recurrent neural networks 
(RNNs, which incorporate enhanced memory, and better handle 
time series data) and LSTMs (an extension of RNN approach 
that adds a ‘forget’ function, thereby allow a sliding window 
approach to time series processing).  

The field of ML generally distinguishes three approaches:  

● Supervised Learning (SL): labeled datasets of predictor 
(input) and criterion (output) pairs are used to train the 
SL model in classification (or, less commonly, 
regression)—that is, to approximate the relationship 
between input and output pairs;  

● Unsupervised Learning (USL): does not use labeled data, 
which means the algorithm has to infer the natural 
structure present (i.e., find relevant relations) in the input 
data by itself; 

● Reinforcement Learning (RL): a rule-based agent 
exploration of the environment, to maximize a reward 
function. RL is particularly powerful in cases of large 
solution space, in which clear predictor/criterion 
classifications are not practical. ANNs are used to train 
an internal model to the agent of the value of the states 
in its environment. From this internal model, the agent 
can derive a policy that will maximize rewards (or 
minimize penalties) from interaction with the 
environment. The agent-based approach of RL makes it 
especially useful in the field of autonomous control, 
where an agent has to learn how to control an unknown 
system by interacting with it. 

B. Methodology: the Hybrid ML Approach 
To realize a highly efficient ATM system, we expect that 

ATCos will have to closely collaborate with AI agents. Thereto, 
understanding the system will be of utmost importance for 
accepting and trusting it. Acceptance, trust, and understanding 
issues in human-automation interaction are some of the most 
difficult problems to solve. There is neither an easy-to-follow 
recipe nor a mathematical formula that captures and optimizes 
the dynamics of interaction. A hybrid ML approach is proposed 
to achieve a balance between high conformance and more 
optimal CD&R solutions. SL will be used to achieve high 
conformance by creating individualized CD&R prediction 
models from recorded controller data. As mentioned earlier, 
achieving high conformance may also imply that ‘better’ (and 
perhaps more optimal) solutions are not explored. By linking RL 



to the SL model, the ML system can explore more optimal 
solutions derived from CD&R ‘best practices’ and airspace 
performance criteria.  

SL, the first part of the hybrid ML approach, involves the 
classification of input examples with output conditions. An SL 
model can come to associate a certain input pattern with an 
output criterion, even if the underlying relationship is nonlinear. 
SL models make use of multiple layers of hidden nodes to refine 
feature extraction. The automation aims to learn a relationship 
between an input set and a target set, based on the input/output 
data labels. A well-known example is to classify objects in a 
scenery based on labeled training data. Large nets can be created 
by combining and interconnecting both SL (e.g., LSTM), 
together with logic/code computations for real-time inference. 
Specifically, for SL the use of CNN / LSTM deep learning, an 
extension of general neural network modeling, appears 
promising. Computations in these inference pipelines are time-
controlled and support feedback loops to maximize performance 
– at run time – of individual nets (i.e., SL and RL). Since nets 
and logic are combined, it is also possible to get partial 
explanations on internal computations within the pipeline.   

Research has demonstrated the utility of SL in RPAS 
conflict detection – given enough training examples, an SL 
model can predict quite early and accurately when a traffic 
pattern will result in conflict [55]. However, there are some 
problems in which there are so many combinations that it is 
practically impossible to create a ‘supervisor.’ In the case of 
CD&R steps, SL might work well for conflict detection (i.e. 
predicting a conflict), but there are generally several ways to 
resolve a predicted conflict. SL has proven effective at conflict 
detection in dynamic ATC scenarios [54], however, SL by itself 
is not enough, since any mistakes in the training data will also 
be learned by the SL algorithm. It is in that sense not intelligent 
but will try to replicate the strategy underlying the training data, 
even if this strategy is not optimal. An SL system could be 
trained on specific resolutions, ending up with a model that 
mimics the controller. Although such a system could facilitate 
high trust and acceptance by being highly conformal to the 
individual controller, it would be limited to human performance. 
As such, SL alone is likely insufficient for CD&R ML.  

The second part of the hybrid ML approach rests on rule-
based RL. In RL, which is based on how humans learn, a policy 
is trained that will maximize the sum of expected future rewards, 
which are generated by applying actions in an environment. 
Some actions lead to high rewards, while others lead to low 
rewards. The RL agent builds an internal model of expected 
future rewards for a given state-action combination and uses this 
internal value-model to create a policy that will maximize the 
future rewards. An RL based layer can be added to the policy 
trained by SL. This RL layer makes the automation intelligent 
since it can detect obvious flaws in the strategy, based on a 
predefined cost or reward function, and will eliminate these 
flaws. Although some conformity will be lost in this step, the 
performance will be improved, and, by making the whole 
process transparent, it is expected that the acceptance of the 
automation will be improved as well. An important task is to 
design the rewards function of the RL layer in such a way that a 
good trade-off between conformance and performance is 
obtained. The internal model of expected future rewards that the 

agent builds can be used to explain its actions to the human 
operator. For example, it is possible to ‘explain’ why a certain 
action was selected, based on the individual contributions in the 
reward function, such as conformity to the strategy learned by 
SL, or the addition rule-based conditions. 

The RL ruleset is best seen as a set of strategies and 
principles used by controllers. Examples can be found in 
EUROCONTROL’s CORA work [51], as part of their effort to 
develop a smart medium-term CD&R advisory system for en-
route controllers:  

“Never put converging aircraft at the same altitude” 

“Never put a faster aircraft in an overtake situation” 

C. Experimenting with Conformance and Transparency   
In MAHALO, a series of real-time, human-in-the-loop 

experiments will provide empirical insights into the impact of 
conformance and transparency on ATCo’s trust, acceptance, 
system understanding, and performance. Should we develop 
automation that is conformal to the human, or should we develop 
(more optimal) automation that is transparent to the human? By 
manipulating levels of conformance and transparency, 
MAHALO aims to answer the high-level research questions. 

The interaction between conformance and transparency is 
illustrated in Fig. 2. The rationale for developing a hybrid ML 
model is that it allows for manipulating levels of conformance. 
At one end, we propose to develop a conformal system based on 
SL where the AI learns to ‘mimic’ the human based on ATCo-
derived data (e.g., by relating ATCo clearances to radar screen 
pixel data). We expect acceptance and trust to increase with a 
highly conformal system. While fully conformal, the ML system 
will be susceptible to the same mistakes as a human and thus can 
lead to inefficient solutions. At the other end, we allow the ML 
system to disregard the human and optimize solutions to CD&R 
problems. We expect this to benefit performance but also 
rejections and distrust. The system may generate solutions that 
ATCos may never come up with, or fully understand. Thereto, 
it will be challenging for the human to intervene in case of 
inadvertent ‘stupid’ or bad solutions, e.g., derived from spurious 
correlations or biased data in the training. We expect to find a 
middle ground that offers the best tradeoff between human and 
AI solutions. Using RL, the ML model can learn to solve 
problems more optimally while adhering to human-like best 
practices. Thus, less conformal to the individual, but more 
efficient from an airspace perspective. 

Conformance is intended to be a naturally-occurring, non-
manipulated variable. Earlier research using “Wizard of Oz” 

 
Fig. 2. Interaction between conformance and transparency.  



techniques simulated conformance by using replaying self- or 
other generated solutions [47]. Part of the aim is to assess the 
performance of automation using a non-manipulative approach. 
An ATCO’s conformance rating for a given ML solution defines 
the conformance level of that solution for that controller. 

Transparency can be used to migrate closer to more optimal 
solutions while preserving human acceptance and trust.  In 
relation to the solution conformance, the automation must be 
able to explain  

• how the ML system has derived at a particular solution 
(i.e., process and relationship between input and output), 
and  

• why the ML system has derived that a particular conflict 
resolution matches the individual’s preferences (i.e., why 
it is strategic conformal). 

To make the AI understandable we intend to create a shared 
mental model, using an EID interface that provides transparency 
by explaining the machine solution to the human. With respect 
to the time- and safety-critical aspects of CD&R, a difficult 
balance to achieve is the comprehensivity and simplicity of 
explanations. In situations where decisions have to made fast, 
time for detailed and exhaustive explanations, which best afford 
an understanding of the ML system, is limited. Explanations will 
address the three fundamental questions pertaining to 
automation behavior: what will it do, how, and why.  

V. CONCLUSION AND FUTURE WORK 
The greatest strength of ML systems lies in their ability to 

learn, re-organize, and improve performance over time. When 
ML systems are required to work with humans, this ability may 
also be its greatest weakness. While ML systems approximate 
some unique human abilities, such as flexibility and 
adaptability, it also makes ML systems unpredictable and 
difficult to interpret. This is a major concern when considering 
introducing ML systems to safety-critical domains such as 
CD&R in ATM, which strive for control, predictability, and 
stability. Therefore, it is of utmost importance that the operators 
expected to work with these systems can understand them. This 
paper argues that a promising way forward for facilitating an 
understanding of ML systems is for the system to adapt to the 
individual and/or explain its behavior. We intend to build such 
a system in the MAHALO project and empirically explore the 
benefits and limitations of strategic conformance and 
automation transparency in real-time simulations. While fully 
automated systems may be an alternative in the long-term, the 
short-term and more realistic development of future ATM 
systems will to a large extent incorporate human-automation 
teams. A challenge is to design AI systems that humans accept, 
trust, and are willing to work with, and delegate tasks. Only 
when the automation is accepted can true collaboration be 
achieved and performance ambitions realized.  
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